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Lecture 4

Expectations, Momentum, and Uncertainty

Assigned Reading;:
E&R - 3au, 51346
Li. 258, 31-3
Ga. 224
Sh. 3,4

Our job now is to properly define the uncertainties Az and Ap.

As an aside, let us review the properties of discrete probability distributions.
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Consider the number distribution N of ages a in a population. The probability

of finding a person with a given age is P(a) = %, satisfying > P(a) = 1.

What is the most likely age? In this case, that is 22.

What is the average age? In general, the weighted average

(a) = —Z}L\Zil(a) = aP(a).

In this case, it is 19.4. Note that in general, as in this example, (a) does not have
to be a measurable value of a!

What is the average of the squared age? In general,
(a®) =) a’P(a).
For a general function of the age,

(f(a)) = fa)P(a).
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Is the average of the squared age equal to the square of the average age? In
mathematical notation, is (a?) = (a)?? No! If a represented a more general
quantity rather than age, it could sometimes be positive or negative, and those
terms might cancel out in the average. By contrast, a® would never be negative,
so its average would satisfy that too.

How do we characterize the uncertainty? We could use Aa = a — (a), but the
problem is that (Aa) = 0 identically. Instead, we use the standard deviation
defined by

(Aa)* = {(a —(a))?),
which also satisfies

(Aa)* = (a®) — ().
In this case, the standard deviation is about 2.8.

Similar expressions exist for continuous variables. Given that i) has been discussed as a
function of position x thus far, it makes sense to proceed in that way. Mathematically,

=/mf@muwm (0.1)

but p(x) = *(x)(x). Hence, the way to find the expectation value of a function of position
in a given quantum state is

:/W¢wmﬂ@wunm. (0.2)

In all this, the normalization ffooop(:zr) dr = 1 is assumed. From this, the uncertainty in
position
Ar =/ (x?) — (x)? (0.3)

can be found.
Notice that expectation values (f(x)) depend on the state! This can be written as (f(z))y,

(F(@))ys or (DIf(2)]1).

For example, let us consider a wavefunction given by
Y(x) = {N - (2* — I?)? for |z| <[, 0 otherwise}. (0.4)
We need to figure out the normalization for this wavefunction by
/ ()P de = 1 (0.5)

which, when effected by nondimensionalization of the integral, yields N = 315 6\7 .

After thls by noting that [4)(x)|? is even while z is odd, then (z) = 0. Also,

(z?) = L. Hence, Ax = \/—ﬁ.
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Figure 1: Plot of ¢(z) in this case

After all of this, how do we find the momentum expectation value (p)? Naively, we might
say that (p) = ffooo *(x)py(z) de. But how exactly are we to express p in an integral over
functions of x? Clearly, this will not do!

Here’s a hint: we know that a wave with

k=22t
is associated with a particle with
p=h\" = hk.
Disregarding normalization, the associated wavefunction is
w — eikx‘
But note that ek
eZ X .
9 ike®.
x
This means that ,
.haezkaz . b
—1 = hke'™™.
Ox
Thus Het
e’L X .
—ih =p-e*
Ox b

and the units work out too! But what does momentum have to do with a derivative with
respect to position anyway?

Here’s another hint: Noether’s theorem states that to every symmetry is associated a con-
served quantity.

’ Symmetry ‘Conservatz’on

x — X + Ax P
t—t+ At E

<~
x —R ‘X L
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So momentum is associated with spatial translations!

Now consider how translations behave for functions:

L 0f() | POS()

f@) = fo+0) = fo) + 2 4 2L (06)
=10

—Z;@gﬂw (0.7)

= e%f(x). (0.8)

Hence translations are generated by spatial derlvatlves . But we just said that translations

are associated with p! This means that it is natural to assoc1ate p with ‘99: somehow. In a

similar way, E' would be associated with gw and L, with a

That’s enough for hints. We need to take a stand on this.

Momentum in quantum mechanics is realized by an operator

0
p = —ih—|. 0.9
p=—ilim (0.9)
This operator p is what we use to compute expectation values. More precisely,
an
= (—ih)" / v (x ¢ )
and the uncertainty is then given by Ap = (p2) — (p)2.
Let us return to our previous example wavefunction given by
Y(x) = {N - (2* — I?)? for |z| <[, 0 otherwise}. (0.11)
Now we can find
L[ OY(x
o =i [ @2 (0.12)
= —ih|N|2/ (22 —1%2-(2-22- (2> = 1?)) dx (0.13)
=0 (0.14)
as the wavefunction is even while its spatial derivative is odd.
By a similar computation, (p?) = 3;22, which dimensionally makes sense as well.

From this, we find that Ap = ‘[h, and the uncertainty relation is satisfied as

AxAp = \/;h.

(0.10)
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But what does this new operator p have to do with having momentum p = hk? Let us
consider two states given by

¢k (ZL’) — eikx
and
ws(x) _ ezkzx + ezk”x.
The first has definite momentum p = Ak, while the second, being a superposition of states

with definite momenta p = hk and p’ = hk’, is not itself a state of definite momentum. We
can show this by acting on each state with the operator p:

Pr(z) = hkeke
is simply proportional to (), while
ﬁ¢s(x) =h- (keik*r + kfeik'z)

is not simply proportional to ¥,(x). We see that p is an operator which acts simply on
wavefunctions corresponding to states with definite momenta, but not on arbitrary super-
positions of momentum states. This means that p is the operator whose eigenstates
are states of definite momentum, and the corresponding eigenvalue is exactly
the momentum of that state.
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