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Lecture 7 

More on Energy Eigenstates 

Assigned Reading:
 

E&R 3all, 51,3,4,6 

Li. 25− 8, 31− 3 

Ga. 2all  =4 

Sh. 3, 4 

Suppose someone hands you a potential and asks, ”What do the energy eigenfunctions 
look like?” As we will see throughout 8.04, there is a lot of physics in the form of these 
eigenfunctions! 

We know that 
Êφ(x; E) = E · φ(x; E) (0.1) 

where 
ˆ p̂2 

E = + V (x̂). (0.2)
2m 

Knowing that 
∂φ 

p̂φ(x) = −ih
∂x 

and 
x̂φ(x) = xφ(x), 

then the energy eigenvalue equation becomes 

∂x2 

− 
h2 ∂2φ(x; E) 
2m ∂x2 

+ V (x)φ(x; E) = Eφ(x; E). (0.3) 

Using the simplification 

k2(x) = 
2m 
h2 

(E − V (x)) (0.4) 

yields 
∂2φ(x; E) 

+ k2(x)φ(x; E) = 0 (0.5) 

for the energy eigenvalue equation. Denoting f "" (x) = ∂
2f(x) yields
∂x2 

φ"" (x; E) 
= −k2(x) (0.6)

φ(x; E) 

and this form will help us shortly. 
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If E > V (x), then k2(x) > 0, and 
φ "" (x; E) 

< 0 
φ(x; E) 

which implies oscillatory behavior of the eigenfunction in that region. If E < V (x), then 
k2(x) < 0, and 

φ "" (x; E) 
> 0 

φ(x; E) 

which implies exponential behavior of the eigenfunction in that region. 

To reiterate, in classically allowed regions, the energy eigenfunctions are oscillatory, while in 
classically forbidden regions, the energy eigenfunctions are exponential. 

Figure 1: For the energy denoted by the black line for the potential denoted by the green 
curve, regions (I) and (III) are classically forbidden, so the energy eigenfunction exhibits 
exponential behavior, while region (II) is classically allowed, so the energy eigenfunction 
exhibits oscillatory behavior 

Can we get more information about what these energy eigenfunctions look like? 

1. They need to be normalizable. This means that 

lim φ(x; E) = 0.	 (0.7) 
x→±∞ 

2. There	 needs to be continuity in both the energy eigenfunction and its first spatial 
derivative. The second spatial derivative of the energy eigenfunction depends through 
the energy eigenvalue equation on the potential, which may or may not be continuous 
depending on the situation. 

3. In classically allowed regions, the energy eigenfunction oscillates in space. 

4. In classically forbidden regions, the energy eigenfunction exhibits spatially exponential 
behavior. It is not identically zero! This also implies that the probability density in a 
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classically forbidden region is not identically zero! This is a feature that sets quantum 
mechanics apart from classical mechanics! 

5. The energy eigenfunctions can always be taken as real functions even though general 
wavefunctions evolving in time are complex, and this can easily be shown. 

Let us return to the infinite square well. What are the allowed energy eigen­
values? We can use the “shooting” method to answer this. We start at x = 0,√ 
pick a trial E with p = 2mE, and integrate the energy eigenvalue equation 
φ "" (x; E)+k2(x)φ(x; E) = 0. Note that as the energy eigenvalue equation involves 
the second spatial derivative of the energy eigenfunction, the energy eigenvalue 
controls its curvature! 

Figure 2: For E < E0 (top-left), the wavefunction overshoots to the right, and for E0 < E < 
E1 (bottom-left), the wavefunction undershoots to the right, while for E = E0 (top-right) 
and E = E1 (bottom-right), the wavefunction reaches the boundary properly 

Our revisiting the infinite square well leads us to two facts. One is that bound states have 
discrete energies, while unbound states have continuous energies. From this comes the node 
theorem which works for quantum mechanics in one spatial dimension. It states that as 
bound states have discrete energies, the nth spatial energy eigenfunction (starting from 
n = 0) has n nodes. For example, the ground state has no nodes, the first excited state has 
one node, et cetera. 
(picture of weird well potential and eigenfunctions?) 
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