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ˆ ˆIn this note we try to answer the question: “Given two commuting Hermitian operators A and B,
ˆ ˆis each eigenbasis of A also an eigenbasis of B?” We take this occasion to review the mathematical

results needed to explore the answer to such question. Moreover, we will assume that the reader is
familiar with the concepts of vector space, vector subspace, linear combination, linear independence,
diagonalization, inner product, and basis. These concepts can be found in Sections 1.1, 1.2 and 1.4
in [1]. A less specific treatment of the following is given in Section 1.8 therein.

ˆConsider an operator A, acting on vectors belonging to a vector space V. We will make use of the
following definitions:

ˆi) Eigenvalue: A constant λ ∈ C is called an eigenvalue of A if it satisfies the following
equation:

Âv = λv, (1)

for some nonvanishing vector v ∈ V.

ii) Eigenvector: A nonvanishing vector v ∈ V ˆis an eigenvector of A if it satisfies Equation (1)
for some λ ∈ C. Note that v is also called eigenstate, or eigenfunction, depending on the
context.

ˆiii) Nondegenerate eigenvalue/eigenvector: An eigenvalue λ of A is called nondegenerate
if Equation (1) is satisfied by only one vector v, up to an overall complex number, i.e. all
the solutions of Equation (1) are of the form αv, where α ∈ C. This is equivalent to say

ˆthat the eigenvalue λ corresponds to only one eigenstate of A. Similarly, an eigenvector is
called nondegenerate if it is the only vector, up to an overall complex number, that satisfies
Equation (1) for some λ. Degenerate eigenvalues/eigenvectors are those which don’t satisfy
this uniqueness property. Note that some references use the expression “degenerate state”
with respect to Equation (1) but referring only to the energy operator, see for example [2].

Êv = εv,

see below for more details.

iv) Eigenbasis: A set of vectors
V = {vi},

ˆsuch that each vi is an eigenvector of A and V is a basis of V, is called an eigenbasis of V
ˆwith respect to A.
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ˆIn this note we will refer to Hermitian operators, where A is Hermitian if, for any u, v ∈ V,

ˆ ˆ(u,Av) = (Au, v),

and (u, v) is the scalar product in V. There are two reasons why we consider Hermitian operators.
First, because in Quantum Mechanics all observables are postulated to be Hermitian.1 Second,
because Hermitian operators are diagonalizable, i.e. they admit a basis in which they have a
diagonal form, which is then an eigenbasis. See Theorem 10 in Chapter 1 of [1] for this point.

ˆProposition 1. Let A be a Hermitian operator with only nondegenerate eigenvalues, and V =
ˆ

{vi}
andW = {wi} two eigenbases of A. Then V is obtained fromW by permutations and multiplications
by complex numbers of the eigenvectors of W, i.e., for each vi ∈ V, there is wj ∈ W and α ∈ C
such that

vi = αwj .

In other words, V and W contain the same eigenstates.

Proof. Let λi and µi be the eigenvalues of vi and wi, respectively, i.e.

ˆ ˆAvi = λivi, Awi = µiwi. (2)

Since W is a basis, we can write any vi ∈ V as a linear combination of the wi’s,

vi =
∑

αjwj , (3)
j

where αj ∈ C. Then,

ˆ ˆ
∑ ∑

ˆλivi = Avi = A αjwj = αjAwj = µ
j

∑
αj jwj .

j j

ˆwhere we used the linearity of A. Comparing the first and the last members of the above Equation
with Equation (3), we get∑

λiαjwj =
j

∑
µjαjwj =

j

⇒
∑

(µj
j

− λi)αjwj = 0,

and using the fact that the wj ’s are linearly independent, we obtain,

(µj − λi)αj = 0.

This is a set of equations, labelled by j. Each of them has two solutions: either αj = 0, or µj = λi.
Since by hypothesis, the µj ’s are all different from each other, being nondegenerate eigenvalues,
only one of the above set of equations can satisfy µj = λi. Thus all αj ’s but one are zero, and we
obtain, from Equation (3),

vi = αjwj ,

1Recall that this is implied by the requirement of having real eigenvalues.
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for one value of j. This tells us that each vector of V is also contained in W, up to an overall
complex number, which in the above Equation is given by αj . Of course, we can also revert the
whole reasoning and show that each vector of W is contained in V. Therefore we can say that the
two eigenbases are the same, up to permutations and multiplications by complex numbers of their
vectors, and we are done.

ˆ ˆProposition 2. Suppose that A and B are Hermitian operators with vanishing commutator, i.e.

ˆ ˆ[A,B] = 0.

ˆ ˆThen A and B share a common eigenbasis.

ˆProof. Consider an eigenbasis of A, V = {vi}, with λi the eigenvalue associated to vi. Then, for
any vi,

ˆ ˆ ˆ ˆ ˆABvi = BAvi = λiBvi, (4)

ˆ ˆi.e., if Bv 6 ˆ
i = 0, Bvi is an eigenvector of A associated to the same eigenvalue as vi, λi. We have two

cases to consider:

• ˆλi nondegenerate: Bvi can differ from vi only by a constant factor, or

B̂vi = µivi,

ˆand thus vi is also an eigenvector of B, with eigenvalue µi.

• λi degenerate: in this case there are more vectors associated to λi, which we denote by
ˆ ˆwj , j = 1, . . . , N , where N is the degeneracy of λi. Since Bwj is still an eigenvector of A,

ˆwe can write it as a linear combination of the wj ’s. For this reason, the operator B can be
ˆseen as acting “internally” in the subspace spanned by the wj ’s. Since B is Hermitian, it is

Hermitian in particular in this subspace. Indeed, for any u1, u2 belonging to such subspace,

ˆ ˆ(u1, Bu2) = (Bu1, u2),

just because u1, u2 belong also to the “big” vector space V.
ˆNow, since B is Hermitian in this subspace we can diagonalize it, or in other words we can

ˆchoose a basis of eigenvectors of B which span this subspace, and we call them wj
′ . These wj

′

ˆare still eigenvectors of A, and thus the Proposition is proved.

ˆTo understand better the last proof, we can view B as an “infinite matrix”, in the sense explained
by the following picture: 

ˆ ˆ(v1, Bv1) (v1, Bv2)
ˆ ˆ

· · ·
B̂ =

(v2, Bv1) (v2, Bv2)
. .

·
.
· ·

. . .


. . .

 ,
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ˆ ˆwhere the vi’s belong to the basis with respect to which B is represented. If we view B in the
eigenbasis V introduced at the beginning of the proof, we have

B̂ =


B1

B2

B3


,

. .


.

 (5)

where each block B


ˆ

i is a submatrix representing the internal action of B on the subspaces similar to
ˆthe one spanned by the wj ’s. Each block refers to an eigenvalue λi of A, and if λi is nondegenerate

the block will be just a 1× 1 matrix. If λi is degenerate with degeneracy N then the block will be
N ×N . What we did in the degenerate case of the proof was just to show that the corresponding
block Bi is a Hermitian matrix, and thus diagonalizable.

ˆ ˆFinally, note that if we know that A and B share a common eigenbasis, then their commutator is
zero. Indeed, sharing a common eigenbasis means that in such basis they are both represented as
diagonal operators, and thus they commute. This consideration allows us to state a more powerful
statement than the above Preposition:

ˆ ˆProposition 3. Let A and B be two Hermitian operators. Then the following two statements are
equivalent:

ˆ ˆi) A and B possess a common eigenbasis.

ˆ ˆii) A and B commute.

Aimed of the mathematical results we have found, we shall now answer the following question:

ˆ ˆ ˆGiven two commuting Hermitian operators A and B, is each eigenbasis of A also an
ˆeigenbasis of B?

ˆ ˆThe short answer is: it depends. Consider the case where both A and B have only nondegenerate
ˆeigenvalues. Then, by virtue of Proposition 1 and 2, each eigenbasis of A is also an eigenbasis of

ˆ ˆ ˆB. Indeed, by Proposition 2 we can consider a common eigenbasis of A and B, which we denote
by V ˆ. By Proposition 1 we know that we would exhaust all the eigenbases of A by permuting and

ˆmultiplying by complex numbers the vectors of V, and the same for the eigenbases of B. Thus, in
this case, the answer to the above question is YES. In all the other cases, the answer is NO.

ˆ ˆConsider e.g. the case where A has some degenerate eigenvalues. Then, in some eigenbasis of A,
B̂ would look like in Equation (5), which is not in diagonal form if some of the blocks Bi are
nondiagonal. For a neat example, we can consider the following matrices:

A =


1 3 2

 , B =
2

 1 2i


,

−2i 1

note that [A,B] = 0, essentially because the 2


×2 lower diagonal block of A is a scalar matrix,2 and

thus it must commute with the corresponding lower diagonal block of B. Moreover, B is Hermitian,

2A scalar matrix is a matrix proportional to the identity.
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and then diagonalizable. Note that A and B are represented in terms of an eigenbasis of A, and
that 2 is a degenerate eigenvalue of A. We denote this eigenbasis by V = {e1, e2, e3}, where

e1 =


1 0 00

  , e2 = 1

   , e3 = 0
0


.

0 1

Following the proof of Proposition 2, we only need to find two linear


combinations of e2, e3 such

that the lower block of B assumes a diagonal form. Working out the standard diagonalization
procedure, we find the common eigenbasis W = {e1, v2, v3}, where

1
v2 = √

2
(e2 + ie3), v3 =

1√ (e2
2

− ie3),

and the above matrices assume the following form:

A =


1 3 2 , B = −1 .

2

 
3



For a more physical example, consider the hydrogen atom.


The energy


eigenstates are commonly

labelled by
|n, `,m〉, (6)

ˆ ˆwhere n is the energy level, ` is the label associated to L2, and m is the label associated to Lz

through
L̂zψ = ~mψ.

ˆ ˆ2 ˆIn this basis, E,L and Lz are all diagonal. Using the fact that the states (6) are degenerate, we
ˆwant to construct a new basis where Lz is nondiagonal. One example is

1V = {|n, `, s〉}, where |n, `, s〉 = √ n,
`

m

∑s
,

+ s+ 1
| `,m〉

=−`

− V ˆ ˆand where s = `, . . . , `. Clearly, is a complete set of eigenstates of E and L2, but they are not
ˆeigenstates of Lz, indeed

1
L̂z|n, `, s〉 = √

`+ s+ 1

s∑
m=−`

L̂z|n, `,m〉 =
1√ `,

`
m

∑s
~̂m

+ s+ 1
|n, m〉,

=−`

which clearly doesn’t correspond to Equation (1). Another simple construction we can make with
the hydrogen atom is the following. Consider, instead of (6), the basis given by the eigenvectors of
ˆ ˆE,L2 ˆ ˆ, and Lx, instead of Lz, and denote it by

W = {|n, `,mx〉}. (7)

Thus we have that
L̂x|n, `,mx〉 = ~mx|n, `,mx〉.
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ˆHowever, Lz will not be diagonal in this basis, indeed suppose that, for all mx, there exist αmx

such that
L̂z|n, `,mx〉 = αmx |n, `,mx〉.

Then, on any eigenstate of the form (7),

ˆiLy|n, `,mx〉 ˆ ˆ= [Lz, Lx]|n, `,mx〉 = [~m,αmx ]|n, `,mx〉 = 0,

ˆwhich we know to be false. Therefore is not an eigenbasis for Lz, but it keeps being an eigenbasis
ˆ ˆ2

W
ˆfor E and L . In the basis given by the states (6), the operator Lz assumes the following matrix

form for the first 4 eigenstates:

0

ˆ


Lz = ~


−1

0
1


. .


.

 ,
whereas, in the basis (7),

ˆ ~
Lz = √

2


0

0 −1 0
−1 0 −1
0 −1 0




. .


.

 .
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