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Optional Problems on the Harmonic Oscillator

1. Coherent States

Consider a state ϕα which is an eigenstate of the annihilation operator

â ϕα = αϕα ,

with α a complex number (see next page for a discussion of â and â†). Such a state is
called a “coherent state”. Coherent states turn out to be the closest quantum analog of
classical states with well-defined amplitudes and phases, and are extremely important
in e.g. the quantum mechanical description of laser light, radio cavities, Bose-Einstein
condensates, and just about everything else that’s both macroscopic and quantum.

In this problem we’ll explore some of the most basic features of coherent states.

(a) Show that

â
(
â†
)n 1

0 = n
( n

φ â†
) −

φ0 .

(b) Show that a coherent state ϕα can be written in the form,

†
ϕα = Ceα â φ0 ,

where C is a normalization constant and eα â
†

is defined via Taylor series.

(c) Calculate1 C.

(d) Using your above results, express the coherent state ϕα as a superposition of
the normalized energy eigenstates φn and calculate the probability of finding the
coherent state in the nth eigenstate.

(e) Calculate the average excitation level (ie 〈N̂〉) in the coherent state ϕα. How does
the energy expectation value depend on α?

(f) Which, if any, of the energy eigenstates of the HO are coherent states? To what
value of α do they correspond?

(g) Compute ∆x and ∆p in the coherent state ϕα and verify that a coherent state
is a minimal uncertainty wavepacket. Aside: This is an important sense in which

coherent states are as close to classical as it is possible to get. The next (bonus) problem

will explore another way that coherent states behave classically.

1 ˆ ˆHint: Use the Baker-Campbell-Hausdorff formula which says that, for any two operators X and Y ,
ˆ ˆ ˆ ˆ

eXeY = eY eX [ ˆ ˆ ] ˆ ˆ ˆ ˆ ˆ ˆ ˆe X,Y so long as the commutator [X,Y ] itself commutes with X and Y , eg [X, [X,Y ]] = 0.



2 8.04: Optional Problems on the Harmonic Oscillator

2. Harmonic Oscillators Oscillate Harmonically II

Consider a particle of mass m in a harmonic oscillator potential with wave function

1
ψ(x, 0) =

(
πβ2

)1/4

e
− 1 2

2 (x2β
−xo)

where β2 ~= . This is nothing but the ground state wavefunction displaced from its
mωo

equilibrium position, x=0, to x=xo (think of a stretched spring). When xo 6= 0, this
state is not an eigenstate of the harmonic oscillator (think symmetry) and will thus
evolve non-trivially in time. In this problem we will study its evolution.

(a) Act on the initial state with the annihilation operator (re-expressed in terms of x̂
and p̂). What kind of a state is this? Hint: look back at the last problem...

(b) Write down a formal expression for ψ(x, t) at a subsequent time t > 0 as a super-
position of energy eigenstates.

1

(c) Using the form of the energy eigenstates, φn(x) = NnHn(x/β)e
− 2

2 x2β , show 2 that
the coefficients of this expansion cn ≡ (φn|ψ) take the form,

1
cn = √

n!

(
xo√
2β

)n
e
− 1

4β2
x2o

2Hint: You can do this in many ways, including brute force, but a particularly efficient and illuminating
way involves the idea of a generating function, as follows. Consider the function

Z(u, s) = e−s
2+2su .

Performing a taylor expansion in s gives,

∞
)

Z(u, s) =
n

∑ Hn(u

=0

sn .
n!

where the Hn(u) are the Hermite polynomials (to check, compare the first few terms in the taylor expansion
to the table from lecture). Taking k derivatives of Z(u, s) with respect to s then setting s to 0 thus gives,

Hk(u) =

(
∂k

Z(u, s)
∂sk

) ∣∣
.

s=0

Z(u, s) is called a generating function for the Hn(u). The beaut

∣∣
y of the generating function is that many

things you’d have to do one at a time with the Hn (say, integrate them against a gaussian...) can be done all
at once by using Z to get a generating function for your quantities of interest. If you play around a little bit,
you should be able to use Z(u, s) to build a generating function C(u, s) for cn and derive the stated result.
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(d) Substitute this cn into your formal expression for ψ(x, t) and square to show that

1
P(x, t) = √

πβ
e
− 1 2

2 (x−xo cos(ωot))β

Our initially displaced wavepacket evolves in time with fixed shape but with its
center oscillating around the minimum with an amplitude xo and frequency ωo!

Hint: Take advantage of the generating function Z(x, s)!
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3. More on Coherent States, and a little Squeezing

The “coherent states” ϕα of a harmonic oscillator of mass m and frequency ωo, which
we studied above, are the eigenfunctions of the lowering operator â,

â ϕα = αϕα .

In this problem we’ll illuminate the physics of these states by bringing to bear all of
the operator tools we’ve built so far: the non-Hermitian raising and lowering operators

ˆ ˆ ˆâ† and â, the Hermitian Number and Energy operators N=â†â and E=~ωo(N + 1),
2

ˆ ˆ ˆthe Unitary symmetry operators TL and Bq, and the Unitary time-propagator Ut.
Note: At no point in this problem will you need the functional form of any wavefunctions.

Everything will follow from the various operators and their commutation relations.

(a) To begin, verify the following commutation relations (with γ a complex number):[
ˆa, TL

] L
= √

2β
T̂L ,

[
a, B̂q

]
=

iqβ√ ˆ ˆ ˆ
B ˆ γ
q , a eγN = eγeγN â , â†

ˆ
e N = e−

ˆγeγN â†
2~

Physically, what do the first two commutators say about the set of coherent states?

(b) Consider the state
ˆ ˆφxopo = BpoTxoϕ0

where ϕ0 is the ground state, â ϕ0 = 0. Deduce 〈x̂〉 and 〈p̂〉 in this state. How does
the probability distribution differ from that of the ground state? Experimentally,
if you are handed a harmonic oscillator in its ground state, how might you force
the system into the state φxopo?

(c) Using the commutators above, verify that φxopo is a coherent state, φxopo ≡ ϕαo ,
and determine the corresponding eigenvalue αo. Use your results to give a physical
interpretation for a generic coherent state ϕα with â-eigenvalue α.3

ˆ(d) Using the propagator Ut for the harmonic oscillator (cf problem 2e), and given
the initial condition ψxopo(x, 0)=φxopo(x), we can formally write ψxopo(x, t) as,

ˆψxopo(x, t) = Ut φxopo .

Show that ψxopo(x, t) is again a coherent state with eigenvalue αt = α iω
o e
− t.

(e) What are the expectation values 〈x̂〉 and 〈p̂〉 at time t? How do the uncertainties
∆x and ∆p vary with time t? How does the probability distribution P(x, t) vary
with time? Hint: No computations should be required!

3 †
Alternatively, use the Baker-Campbell-Hausdorff formula to directly show that φxopo=Ceαoâ ϕ0, where

αo is the same value you computed in part (c). Is φxopo is properly normalized?
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(f) Now suppose we put our system in the state ϕαo and then immediately squeeze
the potential so that the frequency of the oscillator increases from ωo to ω=s ωo.
Since the frequency appears in the definitions of â and â†, the state ϕαo will not
be a coherent state of the new potential. However, it is an eigenstate of a linear
combination of the raising and lowering operators of the new potential, âs and â†s.

ˆFind the linear combination bo=µoâs+νoâ
†
s of whom the “squeezed state” ϕαo is

an eigenfunction with eigenvalue αo. Observe that |µo|2−|νo|2 =1.

Aside: In general, “squeezed states” Φβ are eigenstates of linear combinations of â and â†,

ˆ ˆbΦβ = β Φβ , b = µ â+ ν â† ,

| |2−| |2 ˆ ˆwhere µ and ν are complex numbers satisfying µ ν =1 so that
[
b, b†

]
=1.

ˆ(g) Using the propagator U s
t for the squeezed potential, show the time-evolved state

Û s
t ϕαo is a squeezed state with the same eigenvalue under a different operator,

ˆ ˆbt U
s ˆ ˆ
t ϕαo = α U s

o t ϕαo , bt=µtâ+νtâ
† .

How do µt and νt depend on time?

(h) Determine 〈x̂〉 and 〈p̂〉 ˆ, as well as the widths ∆x and ∆p, in the state U s
t ϕα. What

has squeezing done to ∆x and ∆p? How do ∆x and ∆p evolve in time? Sketch
the trajectory of 〈x〉 and 〈p〉 as a function of time, then indicate the widths ∆x
and ∆p by using them to define an ellipse centered around the expectation values
at each moment in time. Indicate the effect of squeezing in your sketch.

Aside: Lest this seem like so much formal manipulation, you should know that squeezed states

of the quantum harmonic oscillator turn out to be exceedingly important experimental

tools, used in everything from atomic physics to the detection of gravitational waves.

Seriously! If you’re curious about this, the world’s expert is MIT’s own Prof. Nergis

Mavalvala, an excellent physicist and a powerful quantum mechanic.
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