8.04 Wed Feb 6 Polarizers vs. Hyper-Intelligent Monkeys

Polarization Reminder

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Polarizing Filters

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Polarizing Filters, Cartoon

Crossed Polarizers

Polarizing Filters, Rotated

Three Polarizers

Polarizing Beam Splitter

PBS, Rotated

Polarization and Color-Hardness are Analogous!

Hyper-Intelligent Monkeys

B ↑ →C → W Polarization

An Example from Class

Hyper-Intelligent Monkeys

Why don't they all come out white?

Polarization

What can we learn from polarization?

Three Polarizers, Again

This time with vectors!

Previous field projected onto 45° axis

With and amplitude of ½, the power in H and V is ¼ at the outputs. So, the polarization analogy let's us compute the right result!

The Extra Credit Problem?

MIT OpenCourseWare http://ocw.mit.edu

8.04 Quantum Physics I Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.