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Chapter 1: Key Features of Quantum Mechanics

Quantum mechanics is now almost one-hundred years old, but we are still discovering some of its

surprising features and it remains the subject of much investigation and speculation. The framework

of quantum mechanics is a rich and elegant extension of the framework of classical physics. It is also

counterintuitive and almost paradoxical.

Quantum physics has replaced classical physics as the correct fundamental description of our phys-

ical universe. It is used routinely to describe most phenomena that occur at short distances. Quantum

physics is the result of applying the framework of quantum mechanics to different physical phenomena.

We thus have Quantum Electrodynamics, when quantum mechanics is applied to electromagnetism,

Quantum Optics, when it is applied to light and optical devices, or Quantum Gravity, when it is

applied to gravitation. Quantum mechanics indeed provides a remarkably coherent and elegant frame-

work. The era of quantum physics begins in 1925, with the discoveries of Schrödinger and Heisenberg.

The seeds for these discoveries were planted by Planck, Einstein, Bohr, de Broglie, and others. It is

a tribute to human imagination that we have been able to discover the counterintuitive and abstract

set of rules that define quantum mechanics. Here we aim to explain and provide some perspective on

the main features of this framework.

We will begin by discussing the property of linearity, which quantum mechanics shares with elec-

tromagnetic theory. This property tells us what kind of theory quantum mechanics is and why, it

could be argued, it is simpler than classical mechanics. We then turn to photons, the particles of light.

We use photons and polarizers to explain why quantum physics is not deterministic and, in contrast

with classical physics, the results of some experiments cannot be predicted. Quantum mechanics is a

framework in which we can only predict the probabilities for the various outcomes of any given exper-

iment. Our next subject is quantum superpositions, in which a quantum object somehow manages to

exist simultaneously in two mutually incompatible states. A quantum light-bulb, for example, could

be in a state in which it is both on and off at the same time!

1 Linearity of the equations of motion

In physics a theory is usually described by a set of equations for some quantities called the dynamical

variables of the theory. After writing a theory, the most important task is finding solutions of the

equations. A solution of the equations describes a possible reality, according to the theory. Because

an expanding universe is a solution of Albert Einstein’s gravitational equations, for example, it follows

that an expanding universe is possible, according to this theory. A single theory may have many

solutions, each describing a possible reality.

There are linear theories and nonlinear theories. Nonlinear theories are more complex than linear

theories. In a linear theory a remarkable fact takes place: if you have two solutions you obtain a

third solution of the theory simply by adding the two solutions. An example of a beautiful linear

theory is Maxwell’s theory of electromagnetism, a theory that governs the behavior of electric and

magnetic fields. A field, as you probably know, is a quantity whose values may depend on position

and on time. A simple solution of this theory describes an electromagnetic wave propagating in a

given direction. Another simple solution could describe an electromagnetic wave propagating in a
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different direction. Because the theory is linear, having the two waves propagating simultaneously,

each in its own direction and without affecting each other, is a new and consistent solution. The sum

is a solution in the sense that the electric field in the new solution is the sum of the electric field

in the first solution plus the electric field in the second solution. The same goes for the magnetic

field: the magnetic field in the new solution is the sum of the magnetic field in the first solution plus

the magnetic field in the second solution. In fact you can add any number of solutions to still find

a solution. Even if this sounds esoteric, you are totally familiar with it. The air around you is full

of electromagnetic waves, each one propagating oblivious to the other ones. There are the waves of

thousands of cell phones, the waves carrying hundreds of wireless internet messages, the waves from

a plethora of radio-stations, TV stations, and many, many more. Today, a single transatlantic cable

can carry simultaneously millions of telephone calls, together with huge amounts video and internet

data. All of that courtesy of linearity.

More concretely, we say that Maxwell’s equations are linear equations. A solution of Maxwell’s

equation is described by an electric field E a magnetic field B, a charge density ρ and a current density

J, all collectively denoted as (E, B , ρ , J). This collection of fields and sources satisfy Maxwell’s

equations. Linearity implies that if (E, B , ρ , J) is a solution so is (αE, αB , αρ , αJ), where all fields

and sources have been multiplied by the constant α. Given two solutions

(E1,B1, ρ1,J1) , and (E2,B2, ρ2,J2) , (1.1)

linearity also implies that we can obtain a new solution by adding them

(E1 + E2 , B1 + B2 , ρ1 + ρ2 , J1 + J2) . (1.2)

The new solution may be called the superposition of the two original solutions.

It is not hard to explain what is, in general, a linear equation or a linear set of equations. Consider

the equation

Lu = 0 , (1.3)

where, schematically, u denotes the unknown. The unknown may be a number, or a function of time,

a function of space, a function of time and space, essentially anything unknown! In fact, u could

represent a collection of unknowns, in which case we would replace u above by u1, u2, . . .. The symbol

L denotes a linear operator, an object that satisfies the following two properties

L(u1 + u2) = Lu1 + Lu2 , L(a u) = aLu , (1.4)

where a is a number. Note that these conditions imply that

L(αu1 + βu2) = αLu1 + βLu2 , (1.5)

showing that if u1 is a solution ( Lu1 = 0) and u2 is a solution (Lu2 = 0) then αu1 + βu2 is also a

solution. We call αu1 +βu2 the general superposition of the solutions u1 and u2. An example may

help. Consider the equation
du

dt
+

1
u = 0 , (1.6)

τ

where τ is a constant with units of time. This is, in fact, a linear differential equation, and takes the

form Lu = 0 if we define
du

Lu ≡
dt

+
1
u (1.7)

τ
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Exercise 1. Verify that (1.7) satisfies the conditions for a linear operator.

Einstein’s theory of general relativity is a nonlinear theory whose dynamical variable is a gravita-

tional field, the field that describes, for example, how planets move around a star. Being a nonlinear

theory, you simply cannot add the gravitational fields of different solutions to find a new solution. This

makes Einstein’s theory rather complicated, by all accounts much more complicated than Maxwell the-

ory. In fact, classical mechanics, as invented mostly by Isaac Newton, is also a nonlinear theory! In

classical mechanics the dynamical variables are positions and velocities of particles, acted by forces.

There is no general way to use two solutions to build a third.

Indeed, consider the equation of motion for a particle on a line under the influence of a time-

independent potential V (x), which is in general an arbitrary function of x. The dynamical variable

in this problem is x(t), the position as a function of time. Letting V ′ denote the derivative of V with

respect to its argument, Newton’s second law takes the form

d2x(t)
m =

2
−V ′(x(t)) . (1.8)

dt

The left-hand side is the mass times acceleration and the right hand side is the force experienced by

the particle in the potential. It is probably worth to emphasize that the right hand side is the function

V ′(x) evaluated for x set equal to x(t):

∂V (x)
V ′(x(t)) ≡ .

∂x

∣
(1.9)

x=x(t)

While we could have used here an ordinary derivative, w

∣∣
e wrote a partial derivative as is commonly

done for the general case of time dependent potentials. The reason equation (1.8) is not a linear

equation is that the function V ′(x) is not linear. In general, for arbitrary functions u and v we expect

V ′(au) 6= aV ′(u) , and V ′(u+ v) 6= V ′(u) + V (v) . (1.10)

As a result given a solution x(t), the scaled solution αx(t) is not expected to be a solution. Given two

solutions x1(t) and x2(t) then x1(t) + x2(t) is not guaranteed to be a solution either.

Exercise. What is the most general potential V (x) for which the equation of motion for x(t) is linear?

Quantum mechanics is a linear theory. The signature equation in this theory, the so-called

Schrödinger equation is a linear equation for a quantity called the wavefunction and it determines

its time evolution. The wavefunction is the dynamical variable in quantum mechanics but, curiously,

its physical interpretation was not clear to Erwin Schrödinger when he wrote the equation in 1925. It

was Max Born, who months later suggested that the wavefunction encodes probabilities. This was the

correct physical interpretation, but it was thoroughly disliked by many, including Schrödinger, who

remained unhappy about it for the rest of his life. The linearity of quantum mechanics implies a pro-

found simplicity. In some sense quantum mechanics is simpler than classical mechanics. In quantum

mechanics solutions can be added to form new solutions.

The wavefunction Ψ depends on time and may also depend on space. The Schrödinger equation

(SE) is a partial differential equation that takes the form

∂Ψ
i~ ˆ= HΨ , (1.11)

∂t

3



ˆwhere the Hamiltonian (or energy operator) H is a linear operator that can act on wavefunctions:

ˆ ˆ ˆ ˆ ˆH(aΨ) = aH Ψ , H(Ψ1 + Ψ2) = H(Ψ1) +H(Ψ2) , (1.12)

ˆwith a a constant that in fact need not be real; it can be a complex number. Of course, H itself does

not depend on the wavefunction! To check that the Schrödinger equation is linear we cast it in the

form LΨ = 0 with L defined as
∂Ψ

LΨ ≡ i~
∂
− ĤΨ (1.13)

t

It is now a simple matter to verify that L is a linear operator. Physically this means that if Ψ1 and

Ψ2 are solutions to the Schrödinger equation, then so is the superposition αΨ1 + βΨ2, where α and β

are both complex numbers, i.e. (α, β ∈ C)

2 Complex Numbers are Essential

Quantum mechanics is the first physics theory that truly makes use of complex numbers. The numbers

most of us use for daily life (integers, fractions, decimals) are real numbers. The set of complex

numbers is denoted by C and the set of real numbers is denoted by R. Complex numbers appear

when we combine real numbers with the imaginary unit i, defined to be equal to the square root of

minus one: i
√

≡ −1. Being the square root of minus one, it means that i squared must give minus

one: i2 = −1. Complex numbers are fundamental in mathematics. An equation like x2 = −4, for an

unknown x cannot be solved if x has to be real. No real number squared gives you minus one. But if

we allow for complex numbers, we have the solutions x = ±2i. Mathematicians have shown that all

polynomial equations can be solved in terms of complex numbers.

A complex number z, in all generality, is a number of the form

z = a+ ib ∈ C , a, b ∈ R . (2.1)

Here a and b are real numbers, and ib denotes the product of i with b. The number a is called the real

part of z and b is called the imaginary part of z:

Re z = a , Im z = b . (2.2)

The complex conjugate z∗ of z is defined by

z∗ = a− ib . (2.3)

You can quickly verify that a complex number z is real if z∗ = z and it is purely imaginary if z∗ = −z.
For any complex number z = a+ib one can define the norm |z| of the complex number to be a positive,

real number given by

|z| =
√
a2 + b2 . (2.4)

You can quickly check that

|z|2 = zz∗ , (2.5)

where z∗ ≡ a− ib is called the complex conjugate of z = a+ ib. Complex numbers are represented as

vectors in a two dimensional “complex plane”. The real part of the complex number is the x component

of the vector and the imaginary part of the complex number is the y component. If you consider the

unit length vector in the complex plane making an angle θ with the x axis has x component cos θ and

4



y component sin θ. The vector is therefore the complex number cos θ+ i sin θ. Euler’s identity relates

this to the exponential of iθ:

eiθ = cos θ + i sin θ . (2.6)

A complex number of the form eiχ, with χ real is called a pure phase.

While complex numbers are sometimes useful in classical mechanics or Maxwell theory, they are

not strictly needed. None of the dynamical variables, which correspond to measurable quantities,

is a complex number. In fact, complex numbers can’t be measured at all: all measurements in

physics result in real numbers. In quantum mechanics, however, complex numbers are fundamental.

The Schrödinger equation involves complex numbers. Even more, the wavefunction, the dynamical

variable of quantum mechanics it itself a complex number:

Ψ ∈ C . (2.7)

Since complex numbers cannot be measured the relation between the wavefunction and a measurable

quantity must be somewhat indirect. Born’s idea to identify probabilities, which are always positive

real numbers, with the square of the norm of the wavefuntion was very natural. If we write the

wavefunction of our quantum system as Ψ, the probabilities for possible events are computed from

|Ψ|2. The mathematical framework required to express the laws of quantum mechanics consists of

complex vector spaces. In any vector space we have objects called vectors that can be added together.

In a complex vector space a vector multiplied by a complex number is still a vector. As we will see in

our study of quantum mechanics it is many times useful to think of the wavefunction Ψ as a vector in

some complex vector space.

3 Loss of Determinism

Maxwell’s crowning achievement was the realization that his equations of electromagnetism allowed

for the existence of propagating waves. In particular, in 1865 he conjectured that light was an elec-

tromagnetic wave, a propagating fluctuation of electric and magnetic fields. He was proven right in

subsequent experiments. Towards the end of the nineteenth century physicists were convinced that

light was a wave. The certainty, however, did not last too long. Experiments on blackbody radiation

and on the photo-emission of electrons suggested that the behavior of light had to be more complicated

than that of a simple wave. Max Planck and Albert Einstein were the most prominent contributors

to the resolution of the puzzles raised by those experiments.

In order to explain the features of the photoelectric effect, Einstein postulated (1905) that in a light

beam the energy comes in quanta – the beam is composed of packets of energy. Einstein essentially

implied that light was made up of particles, each carrying a fixed amount of energy. He himself found

this idea disturbing, convinced like most other contemporaries that, as Maxwell had shown, light was

a wave. He anticipated that a physical entity, like light, that could behave both as a particle and as

a wave could bring about the demise of classical physics and would require a completely new physical

theory. He was in fact right. Though he never quite liked quantum mechanics, his ideas about particles

of light, later given the name photons, helped construct this theory.

It took physicists until 1925 to accept that light could behave like a particle. The experiments of

Arthur Compton (1923) eventually convinced most skeptics. Nowadays, particles of light, or photons,

are routinely manipulated in laboratories around the world. Even if mysterious, we have grown

accustomed to them. Each photon of visible light carries very little energy – a small laser pulse can
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contain many billions of photons. Our eye, however, is a very good photon detector: in total darkness,

we are able to see light when as little as ten photons hit upon our retina. When we say that light

behaves like a particle we mean a quantum mechanical particle: a packet of energy and momentum

that is not composed of smaller packets. We do not mean a classical point particle or Newtonian

corpuscle, which is a zero-size object with definite position and velocity.

As it turns out, the energy of a photon depends only on the color of the light. As Einstein

discovered the energy E and frequency ν for a photon are related by

E = hν (3.1)

The frequency of a photon determines the wavelength λ of the light through the relation νλ = c, where

c is the speed of light. All green photons, for example, have the same energy. To increase the energy

in a light beam while keeping the same color, one simply needs more photons.

As we now explain, the existence of photons implies that Quantum Mechanics is not deterministic.

By this we mean that the result of an experiment cannot be determined, as it would in classical

physics, by the conditions that are under the control of the experimenter.

Consider a polarizer whose preferential direction is aligned along the x̂ direction, as shown in

Figure 1. Light that is linearly polarized along the x̂ direction namely, light whose electric field points

in this direction, goes through the polarizer. If the incident light polarization is orthogonal to the x̂

direction the light will not go through at all. Thus light linearly polarized in the ŷ direction will be

totally absorbed by the polarizer. Now consider light polarized along a direction forming an angle α

with the x-axis, as shown in Figure 2. What happens?

Figure 1: A polarizer that transmits light linearly polarized along the x̂ direction.

Figure 2: Light linearly polarized along the direction at an angle α hitting the polarizer.

Thinking of the light as a propagating wave, the incident electric field Eα makes an angle α with

the x-axis and therefore takes the form

Eα = E0 cosα x̂ + E0 sinα ŷ . (3.2)
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This is an electric field of magnitude E0. In here we are ignoring the time and space dependence

of the wave; they are not relevant to our discussion. When this electric field hits the polarizer, the

component along x̂ goes through and the component along ŷ is absorbed. Thus

Beyond the polarizer: E = E0 cosα x̂ . (3.3)

You probably recall that the energy in an electromagnetic wave is proportional to the square of the

magnitude of the electric field. This means that the fraction of the beam’s energy that goes through

the polarizer is (cosα)2. It is also well known that the light emerging from the polarizer has the same

frequency as the incident light.

So far so good. But now, let us try to understand this result by thinking about the photons that

make up the incident light. The premise here is that all photons in the incident beam are identical.

Moreover the photons do not interact with each other. We could even imagine sending the whole

energy of the incident light beam one photon at a time. Since all the light that emerges from the

polarizer has the same frequency as the incident light, and thus the same frequency, we must conclude

that each individual photon either goes through or is absorbed. If a fraction of a photon went through

it would be a photon of lower energy and thus lower frequency, which is something that does not

happen.

But now we have a problem. As we know from the wave analysis, roughly a fraction (cosα)2 of the

photons must go through, since that is the fraction of the energy that is transmitted. Consequently a

fraction 1 − (cosα)2 of the photons must be absorbed. But if all the photons are identical, why is it

that what happens to one photon does not happen to all of them?

The answer in quantum mechanics is that there is indeed a loss of determinism. No one can predict

if a photon will go through or will get absorbed. The best anyone can do is to predict probabilities.

In this case there would be a probability (cosα)2 of going through and a probability 1 − (cosα)2 of

failing to go through.

Two escape routes suggest themselves. Perhaps the polarizer is not really a homogeneous object

and depending exactly on where the photon his it either gets absorbed or goes through. Experiments

show this is not the case. A more intriguing possibility was suggested by Einstein and others. A

possible way out, they claimed, was the existence of hidden variables. The photons, while apparently

identical, would have other hidden properties, not currently understood, that would determine with

certainty which photon goes through and which photon gets absorbed. Hidden variable theories would

seem to be untestable, but surprisingly they can be tested. Through the work of John Bell and others,

physicists have devised clever experiments that rule out most versions of hidden variable theories. No

one has figured out how to restore determinism to quantum mechanics. It seems to be an impossible

task.

When we try to describe photons quantum mechanically we could use wavefunctions, or equivalently

the language of states. A photon polarized along the x̂ direction is not represented using an electric

field, but rather we just give a name for its state:

photon;x . (3.4)

We will learn the rules needed to manipulate

∣∣
such objects,

〉
but for the time being you could think of

it like a vector in some space yet to be defined. Another state of a photon, or vector is∣∣photon; y
〉
, (3.5)
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representing a photon polarized along ŷ. These states are the wavefunctions that represent the photon.

W∣ e now cl〉aim that the photons in the beam that is polarized along the direction α are in a state∣photon;α that can be written as a superposition of the above two states:

photon;α = cosα photon;x + sinα photon; y . (3.6)

This equation should be com

∣∣
pared with

〉
(3.2). While

∣∣
there

〉
are some

∣∣
similarities

〉
–both are superpositions–

one refers to electric fields and the other to “states” of a single photon. Any photon that emerges

from the polarizer will necessarily be polarized in the x̂ direction and therefore it will be in the state

Beyond the polarizer:

This

∣∣photon;x
〉
. (3.7)

can be compared with (3.3) which with the factor cosα carries information about the amplitude

of the wave. Here, for a single photon, there is no room for such a factor.

In the famous Fifth Solvay International Conference of 1927 the world’s most notable physicists

gathered to discuss the newly formulated quantum theory. Seventeen out of the twenty nine attendees

were or became Nobel Prize winners. Einstein, unhappy with the uncertainty in quantum mechanics

stated the nowadays famous quote: “God does not play dice”, to which Niels Bohr is said to have

answered: “Einstein, stop telling God what to do.” Bohr was willing to accept the loss of determinism,

Einstein was not.

4 Quantum Superpositions

We have already discussed the concept of linearity; the idea that the sum of two solutions representing

physical realities represents a new, allowed, physical reality. This superposition of solutions has a

straightforward meaning in classical physics. In the case of electromagnetism, for example, if we have

two solutions, each with its own electric and magnetic field, the “sum” solution is simply understood:

its electric field is the sum of the electric fields of the two solutions and its magnetic field is the sum of

the magnetic fields of the two solutions. In quantum mechanics, as we have explained, linearity holds.

The interpretation of a superposition, however, is very surprising.

One interesting example is provided by a Mach-Zehnder interferometer; an arrangement of beam

splitters, mirrors, and detectors used by Ernst Mach and Ludwig Zehnder in the 1890’s to study

interference between two beams of light.

A beam splitter, as its name indicates, splits an incident beam into two beams, one that is reflected

from the splitter and one that goes through the splitter. Our beam-splitters will be balanced: they

split a given beam into two beams of equal intensity (Figure 3). The light that bounces off is called

the reflected beam, the light that goes through is called the transmitted beam. The incident beam

can hit the beam splitter from the top or from the bottom.

The Mach-Zehnder configuration, shown in Figure 4, has a left beam splitter (BS1) and a right

beam splitter (BS2). In between we have the two mirrors, M1 on the top and M2 on the bottom.

An incoming beam from the left is split by BS1 into two beams, each of which hits a mirror and is

then sent into BS2. At BS2 the beams are recombined and sent into two outgoing beams that go into

photon detectors D0 and D1.

It is relatively simple to arrange the beam-splitters so that the incoming beam, upon splitting at

BS1 and recombination at BS2 emerges in the top beam which goes into D0. In this arrangement

no light at all goes into D1. This requires a precise interference effect at BS2. Note that we have
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Figure 3: An incident beam hitting a beam-splitter results in a reflected beam and a transmitted beam. Left:
incident beam coming from the top. Right: incident beam coming from the bottom.

Figure 4: A Mach-Zehnder interferometer consists of two beam splitters BS1 and BS2, two mirrors M1 and
M2, and two detectors D0 and D1. An incident beam will be split into two beams by BS1. One beam goes
through the upper branch, which contains M1, the other beam goes through the lower branch, which contains
M2. The beams on the two branches recombine at BS2 and are then sent into the detectors. The configuration
is prepared to produce an interference so that all incident photons end at the detector D0, with none at D1.

two beams incident upon BS2; the top beam is called ‘a’ and the lower beam is called ‘b’. Two

contributions go towards D0: the reflection of ‘a’ at BS2 and the transmission from ‘b’ at BS2. These

two contributions interfere constructively to give a beam going into D0. Two contributions also go

towards D1: the transmission from ‘a’ at BS2 and the reflection from ‘b’ at BS2. These two can indeed

be arranged to interfere destructively to give no beam going into D1.

It is instructive to think of the incoming beam as a sequence of photons that we send into the

interferometer, one photon at a time. This shows that, at the level of photons, the interference is not

interference of one photon with another photon. Each photon must interfere with itself to give the

result. Indeed interference between two photons is not possible: destructive interference, for example,

would require that two photons end up giving no photon, which is impossible by energy conservation.

Therefore, each photon does the very strange thing of going through both branches of the inter-

ferometer! Each photon is in a superposition of two states: a state in which the photon is in the top

beam or upper branch, added to a state in which the photon is in the bottom beam or lower branch.

Thus the state of the photon in the interferometer is a funny state in which the photon seems to be

doing two incompatible things at the same time.
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Equation (3.6) is another example of a quantum superposition. The photon state has a component

along an x-polarized photon and a component along a y-polarized photon.

When we speak of a wavefunction, we also sometimes call it a state, because the wavefunction

specifies the “state” of our quantum system. We also sometimes refer to states as vectors. A quantum

state may not be a vector like the familiar vectors in three-dimensional space but it is a vector

nonetheless because it makes sense to add states and to multiply states by numbers. Just like vectors

can be added, linearity guarantees that adding wavefunctions or states is a sensible thing to do. Just

like any vector can be written as a sum of other vectors in many different ways, we will do the same

with our states. By writing our physical state as sums of other states we can learn about the properties

of our state.

Consider now
∣ 〉 ∣ 〉∣ 〉two states ∣A and ∣B . Assume, in addition, that when measuring some property

Q in the state ∣A the answer is always a, and when measuring the same property Q in the state B

the answer is always b. Suppose now that our physical state |Ψ〉 is the superposition

∣∣ 〉
|Ψ〉 = α A + β B , α, β ∈ C . (4.1)

What happens now if we measure propert

∣∣
y Q

〉
in the

∣∣ 〉
system described by the state |Ψ〉? It may seem

reasonable that one gets some intermediate value between a and b, but this is not what happens. A

measurement of Q will yield either a or b. There is no certain answer, classical determinism is lost, but

the answer is always one of these two values and not an intermediate one. The coefficients α and β in

the above superposition affect the probabilities with which we may obtain the two possible values. In

fact, the probabilities to obtain a or b

Probability(a) ∼ |α|2 , Probability(b) ∼ |β|2 . (4.2)

Since the only two possibilities are to measure a or b, the actual probabilities must sum to one and

therefore they are given by

2

y(a) =
|α

Probabilit
|

|α|2 + |β|2
, Probability(b) =

|β|2
. (4.3)

|α|2 + |β|2

If we obtain the value a, immediate repeated measurements would still give a, so the state after

the measurement must be |A〉. The same happens for b, so we have

After measuring a the state becomes |Ψ〉 = |A〉 ,
(4.4)

After measuring b the state becomes |Ψ〉 = |B〉 .

In quantum mechanics one makes the following assumption: Superposing a state with itself doesn’t

chance the physics, nor does it change the state in a non-trivial way. Since superimposing a state with

itself simply changes the overall number multiplying it, we have that Ψ and αΨ represent the same

physics for any complex number α different from zero. Thus, letting ∼= represent physical equivalence∣∣A〉 ∼= 2
∣∣A〉 ∼= i A ∼= −|A〉 . (4.5)

This assumption is necessary to verify that the polarization

∣∣ 〉
of a photon state has the expected number

of degrees of freedom. The polarization of a plane wave, as one studies in electromagnetism, is described

by two real numbers. For this consider an elliptically polarized wave, as shown in Figure 5. At any

given point, the electric field vector traces an ellipse whose shape is encoded by the ratio a/b of
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the semi-major axes (the first real parameter) and a tilt encoded by the angle θ (the second real

parameter). Consider for this a general photon state formed by superposition of the two independent

polarization states |photon;x〉 and |photon; y〉:

α|photon;x〉+ β|photon; y〉 , α, β ∈ C . (4.6)

At first sight it looks as if we have two complex parameters α and β, or equivalently, four real

parameters. But since the overall factor does not matter we can multiply this state by 1/α to get the

equivalent state that encodes all the physics

|photon;x〉 β+ photon;α | y〉 , (4.7)

showing that we really have one complex parameter, the ratio β/α. This is equivalent to two real

parameters, as expected.

Figure 5: Parameters that define an elliptically polarized state.

Let us do a further example of superposition using electrons. Electrons are particles with spin.

Classically, we imagine them as tiny balls spinning around an axis that goes through the particle itself.

Once an axis is fixed, the electron has two and only two options: its rotation may be clockwise or

counterclockwise about the axis, but in both cases it spins at the same fixed rate. These opposite ways

of spinning are called spin up and spin down along the axis (see Figure 6). The up and down refer to

the direction of the angular momentum associated with the rotation, and it is indicated by an arrow.

According to quantum mechanics, and as verified by multiple experiments, the same possibilities, up

or down, arise whatever axis we use to measure the spin of the electron.

Physicists usually set up coordinate systems in space by choosing three orthogonal directions, the

directions of the x, y, and z axes. Let us choose to describe our spinning electrons using the z axis.

One possible state of an electron is to be spin up along the z axis. Such a state is described as | ↑ ; z〉,
with an arrow pointing up, and the label z indicating that the spin arrow points along the increasing z

direction. Another possible state of an electron is spin down along the z axis. Such a state is described

as | ↓ ; z〉, with an arrow pointing down, meaning this time that the spin points along the decreasing

z direction. If these two are possible realities, so it would be the state |Ψ〉 representing the sum

|Ψ〉 = | ↑ ; z〉 + | ↓ ; z〉 .

The state |Ψ〉 is in a superposition of a spin up and a spin down state. What kind of physics does this

sum |Ψ〉 represent? It represents a state in which a measurement of the spin along the z axis would

result in two possible outcomes with equal probabilities: an electron with spin up or an electron with

spin down. Since we can only speak of probabilities, any experiment must involve repetition until

11



probabilities can be determined. Suppose we had a large ensemble of such electrons, all of them in

the above state |Ψ〉. As we measured their spin along z, one at a time, we would find about half of

them spinning up along z and the other half spinning down along z. There is no way to predict which

option will be realized as we measure each electron. It is not easy to imagine superposition, but one

may try as follows. An electron in the above state is in a different kind of existence in which it is able

to both be spinning up along z and spinning down along z simultaneously! It is in such a ghostly,

eerie state, doing incompatible things simultaneously, until its spin is measured. Once measured, the

electron must immediately choose one of the two options; we always find electrons either spinning up

or spinning down.

Figure 6: An electron with spin along the z axis. Left: the electron is said to have spin up along z. Right:
the electron is said to have spin down along z. The up and down arrows represent the direction of the angular
momentum associated with the spinning electron.

A critic of quantum mechanics could suggest a simpler explanation for the above observations. He

or she would claim that the following simpler ensemble results in identical experimental results. In the

critic’s ensemble we have a large number of electrons with 50% of them in the state | ↑ ; z〉 and 50% of

them in the state | ↓ ; z〉. He or she would then state, correctly, that such an ensemble would yield the

same measurements of spins along z as the ensemble of those esoteric |Ψ〉 states. The new ensemble

could provide a simpler explanation of the result without having to invoke quantum superpositions.

Quantum mechanics, however, allows for further experiments that can distinguish between the

ensemble of our friendly critic and the ensemble of |Ψ〉 states. While it would take us too far afield

to explain this, if we measured the spin of the electrons in the x direction, instead of z direction,

the results would be different in the two ensembles. In the ensemble of our critic we would find 50%

of the electrons up along x and 50% of the electrons down along x. In our ensemble of |Ψ〉 states,

however, we would find a very simple result: all states pointing up along x. The critic’s ensemble

is not equivalent to our quantum mechanical ensemble. The critic is thus shown wrong in his or her

attempt to show that quantum mechanical superpositions are not required.

5 Entanglement

When we consider superposition of states of two particles we can get the remarkable phenomenon

called quantum mechanical entanglement. Entangled states of two particles are those in which we

can’t speak separately of the state of each particle. The particles are bound together in a common
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state in which they are entangled with each other.

Let us consider two non-interacting particles. Particle 1 could be in any of the states

{
∣∣u1〉,

e

∣
u2

while particle 2 could b in any of the states

∣ 〉
, ...} , (5.1)

{

It may seem reasonable to conclude that the

∣∣v1〉, ∣∣v2〉, ...} (5.2)

state of the full system, including particle 1 and particle

2 would be specified by stating the state of particle 1 and the state of particle 2. If that would be the

case the possible states would be written as∣∣ui〉⊗ ∣∣vj
for

〉
, i, j ∈ N , (5.3)

some specific choice of i and j that specify the state of particle one and particle two, respectively.

Here we have used the symbol ⊗, which means tensor product, to combine the two states into a single

state for the whole system. We will study ⊗ later, but for the time being we can think of it as a kind

of product that distributes over addition and obeys simple rules, as follows

(α1

∣∣u1〉+ α2

∣∣u2〉)⊗ (β1
∣∣v1〉+ β2

∣∣v2〉) = α1β1
∣∣u1〉⊗ ∣∣v1〉+ α1β2

∣∣u1〉⊗
+ α2β1 u2 ⊗ v1 + α2β2 u2 ⊗

∣∣v2
v2

〉
(5.4)

.

The numbers can be moved across the ⊗ but the order of the

∣∣
states

〉 ∣∣
m

〉
ust be preserv

∣ 〉
ed.

∣ 〉
The state on

the left-hand side –expanded∣ 〉 out∣on〉the right-hand side– is still of the type where

∣ ∣

of the first particle (α1 u1 + α2 u2 ) with a state of the second particle (β1
any one of the states listed

∣
in (5.3)

∣
this state is not entangled.

Using the states in (5.3), however, we can construct more intriguing superp

∣∣v 〉 we combine a state

1 + β2∣∣v2〉). Just like

ositions. Consider the

following one

u1 ⊗ v1 + u2 ⊗ v2 . (5.5)

A state of two particles is said to be entangled

∣∣ 〉 ∣∣
if

〉
it cannot

∣∣ 〉
b

∣∣
e written

〉
in the factorized form (· · · )⊗(· · · )

which allows us to describe the state by simply stating the state of each particle. We can easily see

that the state (5.5) cannot be factorized. If it could it would have to be with a product as indicated

in (5.4). Clearly, involving states like |u3〉 or |v3〉 that do not appear in (5.5) would not help. To

determine the constants α1, α2, β1, β2 we compare the right hand side of (5.4) with our state and

conclude that we need

α1β1 = 1 , α1β2 = 0 , α2β1 = 0 , α2β2 = 1 . (5.6)

It is clear that there is no solution here. The second equation, for example, requires either α1 or β2 to

be zero. Having α1 = 0 contradicts the first equation, and having β2 = 0 contradicts the last equation.

This confirms that the state (5.5) is indeed an entangled state. There is no way to describe the state

by specifying a state for each of the particles.

Let us illustrate the above discussion using electrons and their spin states. Consider a state of two

electrons denoted as | ↑〉 ⊗ | ↓〉. As the notation indicates, the first electron, described by the first

arrow, is up along z while the second electron, described by the second arrow, is down along z (we

omit the label z on the state for brevity). This is not an entangled state. Another possible state is
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one where they are doing exactly the opposite: in | ↓〉 ⊗ | ↑〉 the first electron is down and the second

is up. This second state is also not entangled. It now follows that by superposition we can consider

the state

| ↑〉 ⊗ | ↓〉 + | ↓〉 ⊗ | ↑〉 . (5.7)

This is a entangled state of the pair of electrons.

Exercise. Show that the above state cannot be factorized and thus is indeed entangled.

In the state (5.7) the first electron is up along z if the second electron is down along z (first term),

or the first electron is down along z if the second electron is up along z (second term). There is a

correlation between the spins of the two particles; they always point in opposite directions. Imagine

that the two entangled electrons are very far away from each other: Alice has one electron of the pair

on planet earth and Bob has the other electron on the moon. Nothing we know is connecting these

particles but nevertheless the states of the electrons are linked. Measurements we do on the separate

particles exhibit correlations. Suppose Alice measures the spin of the electron on earth. If she finds

it up along z, it means that the first summand in the above superposition is realized, because in

that summand the first particle is up. As discussed before, the state of the two particles immediately

becomes that of the first summand. This means that the electron on the moon will instantaneously go

into the spin down-along-z configuration, something that could be confirmed by Bob, who is sitting

in the moon with that particle in his lab. This effect on Bob’s electron happens before a message,

carried with the speed of light, could reach the moon telling him that a measurement has been done

by Alice on the earth particle and the result was spin up. Of course, experiments must be done with

an ensemble that contains many pairs of particles, each pair in the same entangled state above. Half

of the times the electron on earth will be found up, with the electron on the moon down and the other

half of the times the electron on earth will be found down, with the electron on the moon up.

Our friendly critic could now say, correctly, that such correlations between the measurements of

spins along z could have been produced by preparing a conventional ensemble in which 50% of the

pairs are in the state | ↑〉 ⊗ | ↓〉 and the other 50% of the pairs are in the state | ↓〉 ⊗ | ↑〉. Such

objections were dealt with conclusively in 1964 by John Bell, who showed that if Alice and Bob are

able to measure spin in three arbitrary directions, the correlations predicted by the quantum entangled

state are different from the classical correlations of any conceivable conventional ensemble. Quantum

correlations in entangled states are very subtle and it takes sophisticated experiments to show they are

not reproducible as classical correlations. Indeed, experiments with entangled states have confirmed

the existence of quantum correlations. The kind of instantaneous action at a distance associated with

measurements on well-separated entangled particles does not lead to paradoxes nor, as it may seem,

to contradictions with the ideas of special relativity. You cannot use quantum mechanical entangled

states to send information faster than the speed of light.

Sarah Geller transcribed Zwiebach’s handwritten notes to create the first LaTeX version of this docu-

ment.
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