Quantum Physics II (8.05) Fall 2013 Assignment 1

Massachusetts Institute of Technology Physics Department September 4, 2013

Due Friday September 13, 2013 3:00pm

Announcements

- Please put you name and section number at the top of your problem set, and place it in the 8.05 box labeled with your section number near 8-395 by 3pm Friday.
- Recommended Reading for the first week: Shankar, sections 5.2, 5.3, and 5.6. Griffiths, sections 2.1, 2.2, 2.5, and 2.6.

Problem Set 1

1. Properties of a wavefunction. [10 points]

A particle of mass m in a one-dimensional potential V(x) has the wave function

$$\psi(x) = Nx \exp\left(-\frac{1}{2}\alpha x^2\right), \quad \alpha > 0$$

- (a) Normalize $\psi(x)$ to determine N. What is $\langle \hat{x} \rangle$? What is $\langle \hat{x}^2 \rangle$?
- (b) What is $\langle \hat{p} \rangle$? What is $\langle \hat{p}^2 \rangle$?
- (c) Is $\psi(x)$ a position eigenstate? Is $\psi(x)$ a momentum eigenstate? Explain.
- (d) Suppose that V(x) = 0. What is $\langle \hat{H} \rangle$?
- (e) Suppose that nothing is known about V(x), but $\psi(x)$ is an energy eigenstate. Find the potential V(x) and the energy eigenvalue E, assuming V(0) = 0. Could $\psi(x)$ be the ground state wavefunction for the particle?
- 2. Energy must exceed the minimum value of the potential.¹ [5 points]

Consider the time-independent Schrödinger equation for a particle of energy E in a potential V(x), with $x \in (-\infty, \infty)$:

$$\frac{d^2\psi}{dx^2} = \frac{2m}{\hbar^2} [V(x) - E] \psi(x) . \tag{1}$$

 $^{^{1}}A$ variation on Griffiths 2.2.

Without loss of generality one can assume that $\psi(x)$ is real. Assume the potential is bounded below,

$$V(x) \ge V_{\min}$$
, for all x ,

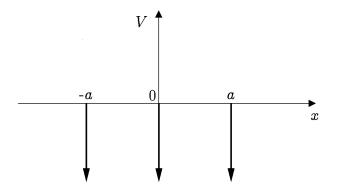
where V_{\min} is the minimum value of the potential.

Prove that $E > V_{\min}$ for *normalizable* solutions to exist. To do this, assume $E \leq V_{\min}$ and try using equation (1) and integration to reach a clear contradiction.

3. Three Delta Functions [15 points]

A particle of mass m moves in one dimension, subject to a potential energy function V(x) which is the sum of three evenly spaced attractive delta functions:

$$V(x) = -V_0 a \sum_{n=-1}^{1} \delta(x - na)$$
, where $V_0 > 0$, $a > 0$ are constants.



- (a) Calculate the discontinuity in the first derivative of the wavefunction at x = -a, 0, and a.
- (b) Consider the possible number and locations of nodes in bound state wavefunctions for this system.
 - (i) How many nodes are possible in the region x > a?
 - (ii) How many nodes are possible in the region 0 < x < a?
 - (iii) Can there be a node at x = a?
 - (iv) Can there be a node at x = 0?
- (c) For arbitrarily large V_0 , how many bound states are there? Sketch them qualitatively.
- (d) Derive the equation that determines the energy for the lowest energy antisymmetric bound state. Find the minimum value of V_0 for the bound state to exist.

4. Estimates on the finite square well [10 points]

Consider the finite square well potential in section 2.6 of Griffiths:

$$V(x) = -V_0$$
 for $-a \le x \le a$, and $V(x) = 0$ for $|x| > a$.

(a) Number of bound states for deep well. Assume that the well is sufficiently deep and/or wide so that z_0 , defined as

$$z_0 \equiv \frac{a}{\hbar} \sqrt{2mV_0} \,,$$

is a large number. Find an estimate for the number of bound states in this well using the result that the k-th bound state has k - 1 nodes. Confirm that your result is a good approximation by comparing with Figure 2.18 in the book.

- (b) Energy of the bound state for a shallow well. Assume now that the potential is very shallow and/or narrow so that z_0 is a very small number and as a result there is just one bound state. Use the relevant equations of the problem (see Griffiths) to estimate the energy E of this state in terms of V_0 and z_0 (*i.e.* find the leading term of the energy in the expansion in terms of z_0 , as $z_0 \to 0$).
- 5. Expectation value $\langle \hat{p} \rangle$ of the momentum. [5 points]
 - (a) A particle's coordinate space wavefunction is square-integrable and real up to an arbitrary multiplicative phase:

$$\psi(x) = e^{i\alpha}\phi(x) \,,$$

with α real and constant and $\phi(x)$ real. Prove that the expectation value of the momentum is zero.

(b) Consider instead the wavefunction

$$\psi(x) = \phi_1(x) + e^{i\alpha}\phi_2(x) \,,$$

where $\phi_1(x)$ and $\phi_2(x)$ are each real and square-integrable. What is $\langle \hat{p} \rangle$? The answer can be expressed as a function of α times an integral that involves the functions ϕ_2 and $d\phi_1/dx$ (or ϕ_1 and $d\phi_2/dx$). For what values of α can we be sure that $\langle \hat{p} \rangle$ is zero without having further information about ϕ_1 and ϕ_2 ?

(c) Consider this time the wavefunction

$$\psi(x) = e^{ikx}\phi(x)\,,$$

with k real and constant and $\phi(x)$ real. Calculate $\langle \hat{p} \rangle$.

6. Conserved probability current. [10 points]

Suppose $\Psi(x,t)$ obeys the one-dimensional Schrödinger equation,

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x,t) + V(x)\Psi(x,t) = i\hbar\frac{\partial}{\partial t}\Psi(x,t).$$
(2)

(a) Derive the conservation law for probability,

$$\frac{\partial \rho}{\partial t} + \frac{\partial J}{\partial x} = 0, \tag{3}$$

where $\rho(x,t)$ is the probability density and J(x,t) is the probability current density

$$\rho(x,t) = \Psi^* \Psi, \quad J(x,t) = \frac{\hbar}{m} \operatorname{Im} \left(\Psi^* \frac{\partial \Psi}{\partial x} \right).$$
(4)

What are the units of ρ and J?

(b) Explain why (3) is a conservation law for probability. In order to do so, define

$$P_{ab}(t) \equiv \int_{a}^{b} dx \ \rho(x,t)$$

evaluate $\frac{dP_{ab}}{dt}$ in terms of currents, and interpret your answer. Show then that a wavefunction $\Psi(x,t)$ that is normalized at time t remains normalized at later times.

(c) In the following we consider stationary states with spatial wavefunctions $\psi(x)$. Compute the probability current J for $\psi(x) = e^{i\alpha(x)}\phi(x)$ where $\alpha(x)$ and $\phi(x)$ are real. Show that

$$\frac{J(x)}{\rho(x)} = \frac{\hbar}{m} \alpha'(x) \,.$$

Explain why the ratio J/ρ can be viewed as the local velocity of the quantum particle described by $\psi(x)$.

- (d) Consider $\psi(x) = Ae^{ipx/\hbar} + Be^{-ipx/\hbar}$, with A and B complex constants. Calculate J(x). Are there cross terms in J between the left and right-moving parts of ψ ?
- 7. Griffiths Problem 2.38, p.85 [10 points]

MIT OpenCourseWare http://ocw.mit.edu

8.05 Quantum Physics II Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.