
Quantum Physics III (8.06) — Spring 2016

Assignment 7

Readings

• Density matrices and decoherence are not well covered in any 8.06 textbook, so the
lecture notes are more thorough on this topic. However, some additional optional
readings are:

• Sakurai, Section 3.4

• Cohen-Tannoudji, Complements EIII and FIV.

• Review 8.05 notes on tensor products and entanglement.

1. Pure states (10 points)
Let ρ be a finite-dimensional density matrix. Recall that ρ is said to be a pure state if
ρ = |ψ〉〈ψ| for some |ψ〉. Prove that tr(ρ2) = 1 if and only if ρ is pure.

2. “Mercedes” states (10 points)
Write down three spin-1/2 states |ψ1〉, |ψ2〉, |ψ3

I
〉 such that if each occurs with proba-

bility 1/3, the resulting density operator is .
2

3. Gaussian phase error (10 points)
Consider an electron spin in the state

ρ =

ρ++ ρ+−

ρ ρ−+ −−


ˆthat experiences a magnetic field Bẑ. The Hamiltonian is then H = −γBSz with

γ = gee/2me. Suppose that the field strength B is drawn from a Gaussian distribution
with mean 0 and variance σ2; i.e. the probability density of B is

1
f(B) = √

2πσ2
e−

B2

22σ .

Let ρ′ be the state that results from applying this field for time t and averaging over
the possible values of B. Compute ρ′.
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4. Lasers vs light bulbs (20 points)

(a) The state of a laser is often described by a coherent state

2

|α〉 e−
|α|

= 2

∞∑
n=0

αn√ n
n!
| 〉,

where |n〉 is the number state with n photons. However, in practice, we may
know |α| but will generally be ignorant of the phase of α. We can model this by
thinking of α as a random variable of the form reiφ where r ≥ 0 is given and φ is
uniformly random on the interval [0, 2π]. (In reality, even r might be incompletely
known, but assume for the sake of this problem that we know r exactly.) Write
down the resulting density operator ρlaser in the number basis. What is 〈n̂〉laser as
a function of r?

(b) By contrast, an incandescent light bulb produces light that is in a thermal state.
Consider only light of a fixed angular frequency ω (i.e. of frequency ν = ω/2π).
Write down the density operator for the thermal state ρthermal at temperature T
in the number basis. Express this as a function of the dimensionless quantity
γ ≡ ~ω/kBT . What is 〈n̂〉thermal? Here the “thermal state” refers to the density
matrix corresponding to the canonical distribution, in which∑a state x with energy
E(x) has probability e−βE(x)/Z where β = 1/k T and Z = e−βE(x′)

B x .′

(c) By observing the average photon number 〈n̂〉 alone it is impossible to distinguish
the state of a laser from that of a thermal state. Suppose we instead measure
fluctuations in photon number, i.e. ∆n̂2 ≡ (n̂ − 〈n̂〉)2. Compute 〈∆n̂2〉laser and
〈∆n̂2〉thermal. Using parts (a) and (b), express your answers in terms of 〈n̂〉.
Explain how this can be used to distinguish these two sources of light. [Hint:
Using 〈∆n̂2〉 = 〈n̂2〉 − 〈n̂〉2 may simplify your calculation.]

5. Bloch equation (20 points) This problem describes a spin-1/2 particle in a magnetic
field undergoing thermal relaxation and dephasing noise. Given positive constants
γ,B, β, T1, T2, let H = −γBS β

z and ρth = e− H/tr[e−βH ]. Assume that the state of the
system evolves according to

i
ρ̇ = −

~
[H, ρ]− 1

T1
(ρ− ρth)− 1

T2

 0 ρ+−

ρ−+ 0

 . (1)

If ρ = I+~a·~σ (with
2

|~a| ≤ 1) then show that (1) can be expressed as

∂~a ~= M~a+ b, (2)
∂t

with M a 3 × ~3 matrix and b ∈ R3 ~. Find M, b. Solve this differential equation.
Assuming that T1 � T2 � 1/γB, briefly qualitatively explain the salient features of
your solution, such as: Does it reach a steady state? What path does it take to get
there? etc.
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6. Spontaneous emission (30 points) Model an atom as a two-level system with
ground state |g〉 and excited state |e〉. Suppose the atom interacts with a photon field
(i.e. a harmonic oscillator) via the Hamiltonian

H = ~Ω(|g〉〈e| ⊗ â† + |e〉〈g| ⊗ â). (3)

(For a justification see problem 3 of pset 5. But for the purposes of this problem we
will take (3) to be an assumption.) This problem will involve the following decoherence
process:

(i) Add a photon field in state |0〉〈0|; i.e. map the state ρ to ρ⊗ |0〉〈0|.
(ii) Apply the Hamiltonian in (3) for time τ .

(iii) Discard the photon state.

(a) Suppose we apply the above decoherence process once. If the atom starts with
density operator ρ, then explain why this leaves the atom with density operator

ρ′
τ

trphoton

[
e−

iH

= ~ (ρ⊗ |0〉〈0|)e
iHτ
~

]
.

Compute ρ′ to order O(τ 2) (i.e. neglecting τ 3 and higher terms).

(b) Now imagine that we repeat the above three steps every τ seconds. We would like
to approximate this process with a continuous-time evolution by taking τ → 0.
In order to obtain a nontrivial answer, we will make Ω change with τ . Specifically
suppose we take τ → 0 while holding δ ≡ Ω2τ fixed. Derive a differential equation
for ρ of the form

ρ̇ = L[ρ]

where L[ρ] is a matrix-valued function of ρ that is not always zero. Equivalently,

ρ(t+ τ) = ρ(t) + L[ρ(t)]τ +O(τ 2),

where L[·] may be a function of δ but not (directly) τ . What is the steady-state
solution of this differential equation? Is it unique?

[Note: The assumption that Ω2 ∼ 1/τ is a crude approximation to what actually
happens. In part (a), you found that the decoherence from coupling to a single
photon mode was proportional to τ 2. However, the number of modes that couple
to the atom at time τ scales as 1/τ . Summing over these yields a change in the
state proportional to τ . Taking Ω2 ∼ 1/τ is a simpler, but less justified, way of
getting to the same conclusion.]

(c) Now modify the original process so that instead of adding a photon field in state
|0〉〈0| in the step (i), we add a thermal state with inverse temperature β. Assume
here that the photons have angular frequency ω. Repeat the analysis in parts (a)
and (b) of this problem to find the resulting differential equation for ρ. What is
the equilibrium state for an atom undergoing this process?

3



MIT OpenCourseWare
http://ocw.mit.edu

8.06 Quantum Physics III
Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

