
Quantum Physics III (8.06) — Spring 2016

Assignment 8

Readings

• Griffiths, Sections 5.1-5.3.

• Optional: Shankar, Ch. 10; Cohen-Tannoudji, Ch. XIV

Problem Set 8

1. The “Exchange Force” (15 points)

(a) Spatial wavefunctions: Let |α〉, |β〉 be two orthogonal single-particle states for par-
ticles in 1-d. with ψα(x) = 〈x|α〉 and ψβ(x) = 〈x|β〉. Define the distinguishable,
symmetric and antisymmetric states to be

|ΨD〉 ≡ |α〉 ⊗ |β〉 (1)

ΨS
|α〉 ⊗ |β〉+ |β〉 ⊗ |α〉| 〉 ≡ √ (2)

2

|ΨA
|α〉 ⊗ |β〉 − |β〉 ⊗ |α〉〉 ≡ √ (3)

2

Using tensor product notation, the position of the first (resp. second) particle is
given by the operator x̂1 ≡ x̂

2

⊗ I (resp. x̂2 ≡ I ⊗ x̂). Define DD = 〈ΨD|(x̂1 −
x̂2) |Ψ 2

D〉, Ds = 〈ΨS|(x̂1 − x̂2) |ΨS〉 and DA = 〈ΨA|(x̂1 − x̂2)2|ΨA〉. Calculate
DS − DD and DA − DD. Give a brief intuitive explanation of the signs of your
answers.

(b) Spins: Now consider two spin-s particles. For a single particle, let |s,ma〉 be the
~ma eigenstate of the Sz operator. Suppose ma 6= mb. Define

|ΨD〉 ≡ |s,ma〉 ⊗ |s,mb〉 DD ≡ 〈ΨD| ~(S1 − ~S2)2|ΨD〉 (4)

|ΨS
|s,m〉 ≡ a〉 ⊗ |s,mb〉+ |s,mb〉 ⊗ |s,ma〉√

2
DS ≡ 〈ΨS|(~S1 − ~S2)2|ΨS〉 (5)

|ΨA〉 ≡
|s,ma〉 ⊗ |s,mb〉 − |s,mb〉 ⊗ |s,ma〉√ ~DA ≡ 〈ΨA|(S1 − ~S2)2

2
|ΨA〉 (6)

Calculate DD, DS, DA in terms of ma,mb. Order them from smallest to largest;
i.e. write down an expression of the from DX ≤ DY ≤ DZ with {X, Y, Z} some
permutation of {D,S,A}.

~ ~[Hint: You will find it useful to express S1 ·S2 in terms of the appropriate raising
and lowering operators.]
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2. Two Electrons: Spin-dependent Interaction and Heisenberg Hamiltonian
(20 points)

Consider two electrons with the spatial wave function of one of them given by ψ1 and
that of the other one by ψ2. We will first ignore the interactions between the electrons.
That is, the Hamiltonian of the system can be written as

H = H0(~r1) +H0(~r2) (7)

whereH0 denotes the Hamiltonian for a one-electron system (which is spin-independent).
Assume for simplicity that ψ1 and ψ2 are distinct (i.e. orthogonal) eigenstates of H0

of the same energy.

The spatial wave function of the full system may be either symmetric or antisymmetric
under the interchange of the electrons’ coordinates. Since the electrons are spin-1

2

fermions, the overall wave function must be antisymmetric under the simultaneous
interchange of both space coordinates and spin.

(a) Suppose the spatial wave function is antisymmetric, write down the full wave func-
tions for the system. For these states, what are the eigenvectors and eigenvalues

~ ~ ~ ~of the square and the z-component of the total spin operator Stot = S1 +S2? (S1,2

are the spin operator for each electron respectively.)

(b) Repeat part (a) in the case where the spatial wave function is symmetric.

(c) So far all the states enumerated in parts (a) and (b) have the same energy. Now
add the following term to the Hamiltonian (7):

H′ ~ ~= CS1 · S2 . (8)

That is, the electrons interact by a spin-spin force due to the interaction of the
magnetic moment of each with the magnetic field generated by the other. What
are the eigenstates of the system including the interaction H′? What are the
energies of the states in parts (a) and (b)?

(d) Now suppose we ignore the interaction (8) and consider the following Coulomb
repulsion between the two electrons

e2

H′′ = (9)
|~r1 − ~r2|

Using perturbation theory, compute the first-order contribution of H′′ to the en-
ergy difference ε between the states in (a) and (b). You may leave your answer in
integral form since the explicit spatial wave functions are not given.

(e) Suppose that the system has no spin-spin interaction H′ but does have the
Coulomb repulsion H′′. Argue that such a two-electron system can be described
by an effective Hamiltonian of the form

Heff = − ~JS1 · ~S2 (10)
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and express J in terms of ε. From your answer to 1(a), what do you think the
sign of J will be? [Note: You do not need to do a detailed calculation or a
rigorous proof here. Instead it is enough to give a hand-wavy argument: from
1(a), (anti)symmetric wavefunctions yield particles that are (closer or farther) to
each other, which should (increase or decrease) the Coulomb repulsion.]

[Another note: This exercise tells us that the Hamiltonian for a two-electron (or more
generally many-electron) system which depends only on space and not on spin variables
can in fact be mimicked by an effective spin-spin interaction. This is a direct conse-
quence of the Pauli exclusion principle: spin space and real space are interconnected
quantum mechanically. Equation (10) was first realized by Heisenberg who used it to
understand the origin of ferromagnetism. Note that in a solid, direct spin-spin inter-
actions (8) are also present, but are much weaker (about one hundred times smaller)
than (10) which arises from electrostatic interactions.]

3. Estimating the Properties of Copper (Adapted from Griffiths 5.16 & 5.17,
15 points)

The density of copper is 8.96 gm/cm3, its atomic weight is 63.5 gm/mole, and the
number of free electrons per copper atom is well-approximated by 1. In this problem
you will attempt to model some of the properties of copper, assuming that copper can
be described as a non-relativistic free electron gas.

(a) Calculate the electron Fermi energy for copper in eV.

(b) Is it safe to assume that the electrons in copper are non-relativistic?

(c) Calculate the Fermi temperature for copper, namely the temperature at which
the characteristic thermal energy (kBT , where kB is the Boltzmann constant and
T is the Kelvin temperature) equals the Fermi energy for copper. Solid copper
has a melting point of 1356 K. Is it safe to assume that the electrons in solid
copper are close to the ground state configuration?

(d) The bulk modulus of a material measures how it responds to uniform compression:

∂P
B = −V , (11)

∂V

where V is the volume of the material and P is the pressure. Show that B =
(5/3)P for a free electron gas. How well does the free electron gas model account
for the bulk modulus of copper, 1.34×1012 Ba? (Barye (Ba) = 1 dyne/cm2 is the
cgs unit for pressure.) Is this expected?

4. Fermi Surface for a Harmonic Trap (20 points)

The concept of a Fermi surface and a Fermi energy extends beyond just the free electron
gas model. Consider a non-interacting electron gas in a two-dimensional harmonic trap,
namely N electrons confined to a potential

1
V (x, y) =

2
meω

2(x2 + y2), (12)
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ignoring all electron-electron interactions. (The electrons are rigidly confined to the
x–y plane.) You may assume that N is very large such that sums can be replaced by
the appropriate integrals.

(a) In a harmonic trap, it is no longer helpful to label the one-particle states by
their kx and ky values. What are the one-particle states and energies in this
two-dimensional harmonic trap?

(b) Find a graphical way to visualize the one-particle states, and draw the appropriate
Fermi surface for N electrons.

(c) What is the Fermi energy EF ?

(d) What is the total energy Etotal of the ground state?

(e) Calculate the chemical potential

∂Etotal
µ = , (13)

∂N

and explain the physical significance of the result.

5. White Dwarfs, Neutron Stars, and Black Holes (15 points)

Note: You can directly use formulae derived in lecture for this problem as far as you
state clearly the meaning of those formulae.

(a) Consider a white dwarf star of the same mass as the Sun. Assume that the star
is mainly made of Carbon. What is the radius of the star? Note that the Sun has
a mass of Msun = 2 × 1033 g and a radius of Rsun = 7 × 105 km. Find the ratio
of the mass density of the white dwarf and the Sun.

(b) Calculate the Fermi temperature for the white dwarf in (a). Suppose this white
dwarf has a surface temperature of 104 K (which then looks white), and a core
temperature close to 107 K. Is our zero temperature approximation justified?

(c) In a neutron star, the neutron degeneracy pressure stabilizes the collapse. Calcu-
late the radius of a neutron star with the mass of the Sun. You can assume that
the star only consists of neutrons and the neutron gas is free.1 Find the (neutron)
Fermi energy and compare it to the rest energy of a neutron.

(d) If a star has a mass M that is larger than the Chandrasekhar mass for a neutron
star, the degenerate neutron pressure cannot balance the attractive force of the
gravity and the star will collapse to form a black hole. A black hole has a “surface
of no return”, i.e. any object lying within a radius rs from the center of gravity of
the black hole can not escape and will be devoured by the black hole. rs is called
the “Schwarzschild radius”. Estimate rs by combining M with GN (Newton’s
constant) and c to obtain a length. Evaluate your rs for M = Msun. Compare the
answer with those in (a) and (c).

1This is not a very good approximation to the realistic situation in which nuclear interactions between
neutrons are important.
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6. “Free” Electron Gas? (15 points)

In our discussion of electron gases in metals and in white dwarfs, we have made the
assumption that Coulomb interactions between electrons are not important.

(a) Express in words or simple equations, how you would formulate a criterion to
check this assumption.

(b) For a white dwarf of one solar mass, use your criterion to check whether the
assumption is valid.

[Hints. 1. Remember that metals and stars are electrically neutral objects. 2. Recall
that first-order perturbation theory provides a rigorous bound on the ground-state
energy in one direction.]
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