
   

     
      

                

              
      

       

Quantum Physics III (8.06) — Spring 2018 

Assignment 5 

Posted:Friday, March 9, 2018 

Readings and Announcements 

• Time-dependent perturbation theory: Griÿths, Chapter 9. 

• Cohen-Tannoudji, Chapter 13 and/or Shankar, Chapter 18. 

• This week we have the library sessions of Wed. Mar. 14 and Thurs. Mar. 15 at 
7pm. 

• Read the term paper information to make sure you know what to expect. Start 
thinking about topics to work on. 

1. Tunneling and the Stark E�ect (15 points) 

The Stark e�ect concerns the physics of an atom in an electric field. In this problem, 
you will explore the possibility that in an electric field the electron in an atomic bound 
state can tunnel out making the state unstable. We consider this e�ect in a simpler 
one-dimensional analog problem. 

Suppose an electron is trapped in a one-dimensional square well of depth V0 and 
width d: (

−V0 for |x| < d/2 
V (x) = . 

0 for |x| ≥ d/2 

Suppose a weak constant electric field in the x-direction with strength E is turned on. 
That means the potential is changed as 

V (x) → V (x)− eEx . 

Assume throughout this problem that eEd ≪ ~ 2/2md2 ≪ V0. 

(a) Set E = 0 in this part of the problem. Estimate the ground state energy (i.e. the 
amount by which the ground state energy is above the bottom of the potential 
well) by pretending that the well is infinitely deep. (Because ~ 2/2md2 ≪ V0, 
this is a good approximation.) Use this estimate of the ground state energy in 
subsequent parts of the problem. Note that the true ground state energy is lower 
than what you’ve estimated, why? 
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(b) Sketch the potential with E 6 0 and explain why the ground state of the E = 0= 
potential is no longer stable when E 6 0. = 

(c) Use the semiclassical approximation to calculate the barrier penetration factor for 
the ground state. [You should use the fact that eEd ≪ ~ 2/2md2 to simplify this 
part of the problem.] 

(d) Use classical arguments to convert the barrier penetration factor into an estimate 
of the lifetime of the bound state. 

(e) Now, let’s put in numbers that are characteristic of an atomic system. Calculate 
the lifetime for V0 = 20 eV, d = 2× 10−8 cm and an electric field of 7× 104 V/cm. 
Compare the lifetime you estimate to the age of the universe. 

(f) Show that the lifetime goes like exp(1/E), and explain why this result means that 
this “instability” could not be obtained in any finite order of perturbation theory, 
treating E as a perturbation to the Hamiltonian. 

2. A Time-Dependent Two-State System (15 points) 

Consider a two-state system with Hamiltonian 


 


 

+E v(t)
H(t) = 





 





 

v(t) −E 

|v(t)| is finite. We will label the states as where v(t) is real and 
R ∞ 
−∞ 

1 0 
|1i = |2i = (1) , . 

0 1 

(a) Suppose that at t = −∞ the system is in the state |2i. Use time-dependent 
perturbation theory to determine the probability that at t = +∞ the system is 
in the state |1i, to lowest order in v. 

(b) If E = 0, the eigenstates of H(t) can be chosen to be independent of t. Use this 
fact to calculate the probability of a transition from |2i to |1i exactly, in this case. 
What is the result obtained from time-dependent perturbation theory in this case? 
What is the condition that the perturbative result is a good approximation to the 
exact result? 

In both parts, your answers can be left in terms of integrals involving v(t). 

3. Atom and photon (15 points) Model an atom as a two-level system with ground 
state |gi and excited state |ei and energy splitting ~ωa. Suppose it interacts with 
an electromagnetic field of frequency ωp, which we model as a harmonic oscillator. 
Without interactions the Hamiltonian would be 

~ωa

�
1†â + 

� 

H0 (|eihe| − |gihg|)⊗ I + ~ωp I ⊗ â= 
2 2 � 

σz ⊗ I + ~ωp I ⊗ â

�
~ωa 1†â += 
2 2 
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Since the electric field strength is proportional to â+ â†, we can model an atom-photon 
interaction by 

δH = α (|gihe| + |eihg|)⊗ 
�
â+ â †

� 

for some constant α. 

iH0t/~(a) In the rotating frame, we have δHf (t) = e δH e−iH0t/~ . Compute fδH(t). 

(b) Set ωa = ωp ≡ ω. Compute 
R 
0 
t 
dt ′ fδH(t ′ ). If t ≫ 1/ω, then which terms can 

we neglect? [Hint: You should be left with one term that can be interpreted 
as absorption and another that can be interpreted as spontaneous/stimulated 
emission.] 

4. Gaussian pulse (10 points) Let H0 be a Hamiltonian with spectrum and energies 
given by H0|ni = En|ni for n = 0, 1, 2, . . .. Suppose we apply a perturbation 

�
− t

2 
�

exp 
2˝2 

ˆδH(t) = √ V 
2πτ 2 

where V̂ is an arbitrary time-independent Hermitian operator and τ > 0 is a constant 
with units of time. If our system starts in state |0i at time −∞, using first-order time-
dependent perturbation theory, what is the probability that our system is in state |ni 
at time ∞? What happens in the limits τ → 0 and τ → ∞? You should express your 
answers in terms of the matrix elements Vmn ≡ hm|V̂ |ni. 

5. Vibrational Modes of Carbon Dioxide (25 points) 

This problem will consider the absorption of infrared radiation by CO2. Carbon dioxide 
is a (nearly) linear molecule, and we will treat it as a collection of three point masses 
(at positions x1, x2, x3) connected by springs each with spring constant k. We will 
make a somewhat less justifiable approximation as well by supposing that each atom 
has the same mass m. (This approximation simplifies the calculations while leaving 
the physics still qualitatively valid.) 

spring constant k k 

O C O 

position x1 x2 x3 

mass m m m 

Thus the Hamiltonian is 

2 2 2p1 p2 p3 k k 
H0 = + + + (x1 − x2)

2 + (x2 − x3)
2 (2) 

2m 2m 2m 2 2
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We can also write H0 = T + V , where 

2 2 2p1 p2 p3 k k 
T = + + and V = (x1 − x2)

2 + (x2 − x3)
2 (3) 

2m 2m 2m 2 2

Here all motion is in the x̂ direction and p1, p2, p3 and x1, x2, x3 refer to the momenta 
and positions respectively of the three di�erent atoms. 

(a) We can rewrite V in terms of a matrix K as 
    
x1 1 −1 0 

k   
V = ~x TK~x = 

� 
x1 x2 x3 

� 
K x2


where K = 

−1 2 −1
 

2 
     

x3 0 −1 1 

Diagonalize K. That is, find a diagonal matrix � (with �11 ≥ �22 ≥ �33) and 
a rotation matrix R (i.e. RTR = I) such that K = R�RT . You may find it 
convenient to use a computer for this step; however, your answers should be exact √ 
(e.g. write 1/ 2 instead of 0.70711 . . .). The columns of R are the eigenvectors 
of K, and are also called the normal modes. One of the eigenvalues of K is zero 
(so by our convention �33 = 0). What is the physical significance of this? 

(b) Define normal mode displacement operators ~y = RT~x (i.e. yi = 
P

3 
j=1 Rjixj for 

i = 1, 2, 3). Write V in terms of ~y. 

(c) Define normal mode momentum operators ~π = RTp~ (i.e. πi = 
P

3 
j=1 Rjipj). Show 

that 
[yi, πj ] = i~δi,j. 

Write T in terms of ~π. [Hint: You may find it helpful to use the fact that 
(RTR)ij = (RRT )ij = δij .] 

(d) You should now find thatH0 breaks up into three pieces that depend separately on 
π1, y1, on π2, y2, and on π3. Show that the first two of these pieces are equivalent 
to harmonic oscillators and the third corresponds to a free particle. That is, find 
frequencies ω1, ω2 (in terms of k and m) and operators a1, a2 (in terms of ~y, ~π and 
the other parameters) such that 

� 
† 1

� � 
† 1

� 
π
3

2 

H0 = ~ω1 a
1
a1 + + ~ω2 a

2
a2 + + 

2 2 2m 

and a1, a2 satisfy the commutation relations 

† † †[ai, a ] = δij and [a1, a2] = [a , a 
2
] = 0.j 1

For the rest of the problem, we will work in the energy eigenbasis of H0. This basis 
can be written |n1, n2, π3i = |n1i ⊗ |n2i ⊗ |π3i, where n1, n2, π3 label eigenstates 
of a

1

† a1, a2
† a2, π3 respectively. 
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(e) We are now ready to add radiation. Unlike the most common gases in the at-
mosphere (N2, O2, Ar), CO2 has covalent bounds that are weakly polar. This is 
because the oxygen atoms attract electrons more strongly than the carbon atom 
(i.e. have higher electronegativity). We model this by assuming that the oxygen 
atoms each have charge −q and the carbon atom has charge 2q. (The Coulomb 
interaction is e�ectively already included in (2) so there is no need to modify H0.) 

~Thus the dipole moment d is 

~d = (−qx1 + 2qx2 − qx3)x̂. 

~ †Write d in terms of the ai, a i operators. If an oscillating electric field is applied, 
which mode, if any, will contribute to the absorption of light? 
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