
    

	

	 	

Quantum Physics III (8.06) — Spring 2018 

Assignment 8 

Posted: Thursday, May 3, 2018 

Readings and Announcements 

• Scattering Theory: Griÿths, Chapter 11, 

• Cohen-Tannoudji, Ch. VIII, and/or Shankar, Chapter 19. 

1. Which phase? (10 points) 

In the adiabatic theorem we define En(t) and |ψn(t)i according to 

H(t)|ψn(t)i = En(t)|ψn(t)i. (1) 

Unfortunately, this equation does not have a unique solution, even if there is no degen-
eracy. This is clear because multiplying |ψn(t)i by an arbitrary time-dependent phase 
still gives a solution. 

Suppose that Alice solves (1) and obtains solutions {|ψn
A(t)i} and Bob solves (1) and 

obtains solutions {|ψn
B (t)i}. Assume that they agree at time t = 0, so that 

|ψn
A(0)i = |ψn

B(0)i.

At later times their solutions of (1) may be di�erent. As mentioned above, we may 
have a time-dependent phase αn(t) such that 

|ψA iαn(t)|ψB 
n (t)i = e n (t)i , with αn(0) = 0 . 

Will this lead Alice and Bob to get di�erent predictions from the adiabatic theorem? 
More concretely, suppose that at time t = 0 a system is in state 

1 

|Ψ(t = 0)〉 = |ψA
n (0)〉 = |ψB

n (0)〉 .

Suppose that for times 0 ≤ t ≤ T the Hamiltonian changes adiabatically. Both Alice
and Bob predict the state at time T using the adiabatic theorem, but each follows their
own basis conventions. Write down Alice and Bob’s predictions |ΨA(T )〉 and |ΨB(T )〉
for the state at time T . Are these in fact the same state or are they different? Since in
the adiabatic theorem we care about phases, equality means equality including phases.
Explain your answer.
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2. Partial Waves (15 points) 

Suppose the scattering amplitude for a certain potential is given by 
� � 

2iβk3 
f(θ) =

1 �k 
+ 3e sin(2βk3) cos θ ,

k k0 − k − ik� 

where �, k0, and β are constants characteristic of the potential which produces the 
scattering. As usual, ~k denotes the momentum of the particle. 

(a) What partial waves are active and what are the corresponding phase shifts? Do 
∼ k2l+1 they have the proper behavior as k → 0? (The rule of thumb is that δl , 

which is true for scattering o� a hard sphere.) 

(b) What is the di�erential cross section dσ/d for general values of k? 

(c) What are the partial wave cross sections σℓ? 

(d) Assume βk0
3 ≪ 1. What is the total cross section σ(k) for k ≈ k0. 

(e) Find the total cross section for arbitrary k and the imaginary part of the forward 
scattering amplitude? Do they satisfy the optical theorem? 

3. Scattering from a spherical well (20 points) For some parameters γ and b, con-
sider the following spherically symmetrical potential: 

(

− ~
2 
γ2 r ≤ b 

V (~r) = V (r) = 2m 

0 r > b 

We consider s-wave (ℓ = 0) scattering of an incoming plane wave with momentum ~k. 

(a) Calculate the phase shift δ0. Leave your answer in terms of k, b, and the real and 
positive constant q defined via the relation q2 ≡ k2 + γ2 . 

tan(δ0)(b) Find the scattering length a ≡ − limk→0 k , and plot a/b as a function of γb. 
Your plot should have many zeros. For these values of γb we have σ0 = 0 and 
there is no s-wave scattering. This is known as the Ramsauer-Townsend e�ect. 
Numerically find the smallest positive value of γb for which a = 0. 

Your plot should also have infinities when γb = (n + 1/2)π for n a nonnegative 
integer. What happens to δ0 and σ0 at these points? Is this consistent with the 
bound from partial-wave unitarity? 

(c) Let’s try to explore these infinities more. In the above we took the E → 0 
limit from above, i.e. considering E to be positive and very small. Now con-
sider limE→0− ; i.e. suppose E < 0 and take the limit as E approaches zero. 
Now solutions to the Schrödinger equation correspond to bound states. We can 
equivalently think of k as iκ for some κ > 0. 
A bound state with E very close to zero is called a “threshold” bound state. 
Which values of γb correspond to threshold bound states? For each such value of 
γb how many bound states (i.e. not only including threshold bound states) does 
the potential support? 
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[Comment: For partial-wave scattering at fixed ℓ, the S-matrix element is the 
extra phase e2iδℓ in the outgoing wave relative to the incoming wave. When we 
let k = iκ with κ > 0, the outgoing wave becomes a decaying exponential and 
the ingoing wave becomes a growing exponential. If for such k the S-matrix 

2iδℓ(k)element e = ∞, the growing exponential e�ectively vanishes and we have 
the description of a bound state.] 

(d) Sketch the radial solution u(r) as a function of r/b for k = 0 and γb = 0, π/4, π/2, π. 

(e) Suppose γb is slightly larger than π/2, so there is a threshold bound state with 
energy −EB , with EB positive. Show that for incoming waves of small positive 
energy E, 

c 
σ0 ≈ 

E + EB 

for some constant c. Find c. This result shows that low-energy scattering can be 
used to detect low lying bound states. 

4. Scattering from a δ-shell (15 points) 

Consider s-wave scattering from the potential 

~ 2 
V (r) = λ δ(r − R) ,

2mR 

with λ a large positive constant. 

(a) Let u denote the radial solution. By comparing u ′(r)/u(r) just inside and just 
outside r = R, find a formula to determine δ0. 

tan δ0(b) Find the scattering length a ≡ − limk→0 k . 

(c) Assume λ ≫ 1. Sketch δ0(k). Show that for kR just below nπ, with n a positive 
integer, δ0(k) increases very rapidly by π (as kR increases towards nπ). Sketch 
the s-wave cross-section σ0. Show that the s-wave scattering from this potential 
is the same as that from a hard sphere of radius R for all values of kR except 
those such that kR is close to nπ. What is the significance of these values? 

5. Born Approximation for Scattering From Yukawa and Coulomb Potentials, 
plus a Practical Example of the Latter (15 points) 

Check Griÿths’ Examples 11.5 and 11.6 (p.415). He’s done some of the work for you. 

Consider a Yukawa potential 
−µr e

V (r) = β 
r 

where β and µ are constants. 

(a) Evaluate the scattering amplitude, the di�erential cross section dσ/d , and the 
total cross section in the first Born approximation. Express your answer for the 
total cross section as a function of the energy E. 
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(b) Take β = Q1Q2 and µ = 0, and show that the di�erential cross section you obtain 
for scattering o� a Coulomb potential is the same as the classical Rutherford 
result. Use this di�erential cross section in part (d) below. 

(c) Di�erential cross sections 
d
dσ are what physicists actually use to calculate the rate 

at which scattered particles will enter their detectors. The number of particles 
scattered out into solid angle d per second by a single scatterer is given by 

d2Nout d2N inc dσ 
∗ = × ,

dtd d dtdA 

where the ∗ is for single scatterer, and d2N inc 
is the incident flux in units of 

dtdA 
particles per second per unit area transverse to the beam. 

Consider a uniform beam of dN
dt 

inc 
particles per second with a cross sectional 

area A. This beam strikes a target with n scattering sites per unit volume and 
thickness T . 
Give an expression for the number of particles 

d2Nout 

dtd 
scattered into a detector with angular size d per unit time. 

Show that your result is independent of the cross sectional area A of the beam 
even if the beam is not uniform across this area. This is important because it is 
typically easy for an experimenter to measure dN

dt 

inc 
but hard to measure the cross 

sectional area A or to assess the uniformity of the beam across A. 

(d) Consider a beam of alpha particles (Q1 = 2e) with kinetic energy 8 MeV scattering 
from a gold foil. Suppose that the beam corresponds to a current of 1 nA. [It is 
conventional to use MKS units for beam currents. 1 nA is 10−9 Amperes, meaning 
10−9 Coulombs of charge per second. Each alpha particle has charge 2e, where 
e = 1.6 × 10−19 Coulombs.] Suppose the gold foil is 1 micron thick. You may 
assume the alpha particles scatter only o� nuclei, not o� electrons. You may also 
assume that each alpha particle scatters only once. You will need to look up the 
density of gold and the nuclear charge of gold (Q2). How many alpha particles 
per second do you expect to be scattered into a detector which occupies a cone 
of angular extent dθ = dφ = 10−2 radians, centered at θ = π/2? 

6. Born for 1D problems (15 points) Based on Griÿths’s 11.16, 11.17, 11.18). 

Consider the one-dimensional Schrödinger equation for a particle of mass m moving in 
a potential V (x). For convenience define the rescaled potential function U(x) from 

~ 2 
V (x) = U(x)

2m 

(a) Find the explicit form of the Green’s function G(x) that will allow you to write 
the following integral form of the Schrödinger equation for the wavefunction ψ(x): 

Z 

∞ 

ψ(x) = ψ0(x) + dx ′ G(x − x ′ )U(x ′ )ψ(x ′ ) , 
−∞ 
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where ψ0(x) is a solution with zero potential. Use an outgoing type Green’s 
function in analogy to our 3D case. 

(b) Consider one-dimensional scattering on the open line with a potential V (x) that 
is non-zero only for x ∈ [−x0, x0] for some positive x0. Consider the above integral 
equation setting ψ0(x) equal to a wave Ae

ikx incident from the left: 

Aeikxψ0(x) = 

Show that to first order in the Born approximation the reflection coeÿcient R for 
this potential takes the form 

Z 

� x0 �2 2m 2ikx ′ R ≃ dx ′ e V (x ′ )
� 
. 

~2k 
−x0

(c) Evaluate the above expression for R for the case of the delta function potential 

V (x) = −αδ(x) , 

with α > 0. Write your answer for R in terms of the particle energy E, m, α, and 
~. Compare with the exact reflection coeÿcient given in Griÿths [2.141], p.75. 
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