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8.223, Classical Mechanics II

Exercises 3

23. Verify the Virial Theorem for a one dimensional simple harmonic oscillator by direct calculation, i.e.
compute T (t) and U(t) and find their averages over one cycle.

24. Compute the cross-section for back-scattering off a fixed impenetrable sphere of radius R (i.e., U = 0
for r > R, and U =∞ for r ≤ R, and scattering angle |θ| > π/2).

25. Show that a solution to

F
ẍ+ ω2

ox = cos(ωt+ θ) (1)
m

for the case of resonant driving (ωo = ω) is x(t) = a1 cos(ωot+φ)+a2 t sin(ωot+θ). Find the constants
a1 and φ for the initial conditions x(0) = 0 and ẋ(0) = vo.

26. (×2) Small Oscillations: For the system in problem 16 (pset 2), compute the angular frequency ω for
small oscillations about (stable) equilibrium.

27. Review of damped undriven and driven one dimensional harmonic oscillators

a ×2) The equation of motion for an undriven harmonic oscillator is

mẍ = −λẋ− kx.

Use a trial solution x(t) = e−ct, substitute in the equation, and show that there are three solutions
depending on whether the oscillator is under damped, critically damped or over damped:

i) x(t) = e−Λt [A sinωt+B cosωt]
ii) x(t) = e−Λt [At+B]
iii) x(t) = AeΛ1t +BeΛ2t

Find the values of the Λ’s and ω for each case, in terms of m, λ and k. (Note, k is the “spring constant”
as in the conservative potential U(x) = 1kx2, λ is the damping coefficient, and m the mass.)2

b) A driven damped simple harmonic oscillator obeys the equation

mẍ = −λẋ− kx+ C sinωt

and its solution has the form x(t) = xI(t) + xII(t) where xI(t) is the transient solution and has the
form of the solution in part a). Show that xII(t), the steady state solution, has the form

D
xII(t) = √ sin (ωt+ φ)

(ω2 − ω2 2
o) + Γ2

and find ωo, D, Γ and φ in terms of the constants describing the properties of the oscillator (m, λ and
k) and the drive (C and ω).
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28. A driven oscillator is described by

ẍ+ ω2 F
ox = cos(γt+ α). (2)

m

We found that the solution off resonance is

F/m
x(t) = B cos(ωot+ β) + cos(γt+ α).

ω2
o − γ2

which we can rearrange to

F/m
x(t) = C cos(ωot+ κ) + (cos(γt+ α)

2
o − γ2

− cos(ωot+ α)) .
ω

with new constants C and κ.

a) If the oscillator is driven close to the natural frequency ωo, we can write ωo = γ + ε with ε � ωo.
Keeping terms only linear in ε (i.e. set any ε with higher power to zero), show that we can write

F/m
x(t) = C cos(ωot+ κ) + (cos(ωot+ α εt) cos(ωot+ α)) (3)

2ωoε
− −

b) Show that this evolves to the on resonance solution (LL 22.5) for ε→ 0. Note: you may carry out
the calculation using trigonometric identities or complex notation.

Note: to compare with LL 22.5, convert the above as follows:

C → a, F → f, ω0 → ω, κ→ α, α→ β

29. (×2) Determine the positions of stable equilibrium of a pendulum√ whose point of support, xs, oscillates
horizontally with high frequency: xs = a cos(γt), with γ � g/l (i.e., a horizontal Kapitza pendulum).

30. OPTIONAL: We can write the solution to a simple harmonic oscillator as

vo
x(t) = xo cosωot+ sinωot

ωo

= x1(t, xo) + x2(t, vo).

After a time ∆t, the solution will be x(t+ ∆t) which we may write

x1(t+ ∆t, xo) = ax1(t, xo) + bx2(t, vo)

x2(t+ ∆t, vo) = cx1(t, xo) + dx2(t, vo).

Find a, b, c and d.

31. OPTIONAL: We can use a, b, c and d from the previous problem to make the matrix M such that
~x(t+ ∆t) = M~x(t). Find the eigenvalues of M . Take ∆t = 4π/ωo and find the eigenvectors.
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