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Exercises 3

Verify the Virial Theorem for a one dimensional simple harmonic oscillator by direct calculation, i.e.
compute T'(t) and U(t) and find their averages over one cycle.

Compute the cross-section for back-scattering off a fixed impenetrable sphere of radius R (i.e., U =0
for r > R, and U = oo for r < R, and scattering angle 0] > 7/2).

Show that a solution to

F
&+ w2z = — cos(wt + 6) (1)
m
for the case of resonant driving (w, = w) is (t) = a1 cos(wyt+ @)+ ag tsin(w,t+0). Find the constants
ay and ¢ for the initial conditions z(0) = 0 and &(0) = v,.

(x2) Small Oscillations: For the system in problem 16 (pset 2), compute the angular frequency w for
small oscillations about (stable) equilibrium.

Review of damped undriven and driven one dimensional harmonic oscillators

a x2) The equation of motion for an undriven harmonic oscillator is

mi = -\t — kx.

Use a trial solution z(t) = e~°*, substitute in the equation, and show that there are three solutions

depending on whether the oscillator is under damped, critically damped or over damped:
i) 2(t) = e M [Asinwt + B cos wt]

ii) 2(t) = e A [At + B]

iii) z(t) = AeM? + Behst

Find the values of the A’s and w for each case, in terms of m, A and k. (Note, k is the “spring constant”

as in the conservative potential U(x) = %kx2, A is the damping coefficient, and m the mass.)

b) A driven damped simple harmonic oscillator obeys the equation
md = —At — kx 4+ Csinwt
and its solution has the form x(t) = x;(t) + zr7(¢t) where x;(t) is the transient solution and has the
form of the solution in part a). Show that x;;(t), the steady state solution, has the form
D

xrr(t) = R sin (wt + ¢)

and find w,, D, I" and ¢ in terms of the constants describing the properties of the oscillator (m, A and
k) and the drive (C' and w).
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A driven oscillator is described by
. 2 F
&4 wir = — cos(yt + ). (2)
m
We found that the solution off resonance is
F/m

x(t) = Bcos(wot + B) + o g cos(vt + ).

o

which we can rearrange to

x(t) = C cos(w,yt + K) + o7 =2 (cos(vt + a) — cos(wet + ) .

with new constants C' and k.

a) If the oscillator is driven close to the natural frequency w,, we can write w, = v + € with € < w,.
Keeping terms only linear in € (i.e. set any € with higher power to zero), show that we can write

F/m

t)y = C ot
x(t) cos(wot + K) + S

(cos(wot + a — €et) — cos(wot + @)) (3)

b) Show that this evolves to the on resonance solution (LL 22.5) for ¢ — 0. Note: you may carry out
the calculation using trigonometric identities or complex notation.

Note: to compare with LL 22.5, convert the above as follows:

C—a, F—=f w—ow k—oa a—p

(x2) Determine the positions of stable equilibrium of a pendulum whose point of support, xs, oscillates
horizontally with high frequency: x5 = a cos(vt), with v > 1/g/! (i.e., a horizontal Kapitza pendulum).

OPTIONAL: We can write the solution to a simple harmonic oscillator as

x(t) = mycoswet + Yo gin wot
o
= z1(t, ) + x2(t, v,).
After a time At, the solution will be z(t + At) which we may write

x1(t+ At,xz,) = axi(t,z,) + bza(t,v,)
ot + At,v,) = cxy(t,xo) + dxa(t, v,).

Find a, b, c and d.

OPTIONAL: We can use a,b,c and d from the previous problem to make the matrix M such that
Z(t + At) = MZ(t). Find the eigenvalues of M. Take At = 47 /w, and find the eigenvectors.
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