
  (14) Tricky Potentials 

1 Kaptiza Example 

Let’s try a slightly different pendulum system this time for our next example. 

Kapitza 

1 � � 12 2T = m ẋ + ẏ , U = mgym, D = bφ̇2 
m m2 2 

xm = l sin φ , ym = yd − l cos φ 

ẋm = l cos φφ̇ , ẏm = ẏd + l sin φφ̇
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The Lagrangian for this system, after dropping terms which contain only yd, which 
is an explicit function of time, is 

� � 
L =

1 
m l2φ̇2 + 2l sin φ φ̇ẏd + mgl cos φ 

2� � � � 
¨d ∂L 

= ml lφ + cos φφ̇ẏd + sin φÿd
dt ∂φ̇ � �∂L ∂D − = ml cos φφ̇ẏd − g sin φ − bφ̇
∂φ ∂φ̇

which gives us the equation of motion. 
A vertically driven pendulum is a bit of a strange thing; it doesn’t seem to work 

as a driver! 

b¨ ˙lφ + φ + (g + ÿd) sin φ = 0 
lm 

where the damping term is b φ̇.lm 
Instead, the drive appears to modify gravity. This makes sense, due to the 

equivalence principle. Interestingly, this let’s us explore parametric resonance... 
Notice how the pendulum becomes excited with a drive at twice the resonance 

frequency. 

We won’t cover parametric resonance further, but LL27 does. Methods for 
understanding non-linear/anharmonic behavior are also covered in LL 28-29, but I 
found the math unenelightening, so I won’t try to reproduce it here. 
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We also see strange behavior for a high frequency drive. Damping is not im-
portant for this, so let’s operate with b = 0. We can understand this by noticing that 
the pendulum’s motion consists of a high frequency part (at the drive frequency) 
and a low frequency part (swinging around). 

φ (t) ' φ1 (t) + φ2 (t) 

where φ1 corresponds to slow oscillations, and φ2 to fast 
¨ lφ + (g + ÿd) sin φ = 0 

l 
� 
¨ φ1 + ¨ φ2 

� 
+ (g + ÿd) sin (φ1 + φ2) = 0 

assume φ1 ∼ const, and φ2 � 1 

l ̈  φ2 + (g + ÿd) (sin φ1 + cos φ1φ2) = 0 

for yd = ad cos (ωt), 

ÿd = −adω2 cos ωt = −ω2 yd 

Fast oscillation terms, to first order, are 

¨ lφ2 + g cos φ1φ2 = adω2 sin φ1 cos ωt 

driven response: 
adω

2 sin φ1 yd⇒ φ2 ' cos ωt ' − sin φ1 for ω � ω0l(ω0
2 cos φ1−ω2) l 

Graphically this result is 
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High Frequency Drive 

Returning to our equations of motion, but keeping φ2 � 1 and ¨ = − sin φ1 
ÿdφ2 l 

� � � � 
lφ̈ 

1 + ω2 sin φ1yd + g − ω2yd sin φ1 1 − cos φ1 
yd = 0 � � l 

¨ sin 2φ1 ω2 2lφ1 + g sin φ1 + 2l yd − gyd = 0 

We are looking for the slow behavior, so let’s average over the fast drive period. 
Since yd = ad cos (ωt) 

Slow Behavior 
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� �2g 1 adω¨ ⇒ φ1 + sin φ1 + sin (2φ1) = 0 
l 4 l 

If we are close to φ1 ' π (pointing up) 

for φ1 = π + ε with ε � 1 ⇒ sin φ1 ' −ε, sin 2φ1 ' 2ε� �� �21 adω − g⇒ ε̈+ ε = 0 2 l l 

� �21 adω⇒ oscillator with ω2 = − g 
0 2 l l 

2stable if a ω2 > gl d

So, as we have seen, the Kapitza pendulum is stable around φ ∼ π (i.e. inverted) 
given a sufficiently fast drive. 

Generally, when treating motion in a rapidly oscillating field, we can define an 
effective potential 

¯¯= U + T mdotq2 

where qfast is the fast part of q(t) = qslow(t) + qfast(t) 

Ueff = U(qslow) + 12 fast 

for us, this would be 

E = 1 
2 ml2 

� 
φ̇1 + φ̇2 

�2 
+ mg (yd − l cos(φ1 + φ2)) 

average over fast oscillations ( ̄yd = 0) 

⇒ E = 
1 
2 
m(l φ̇1)

2 | {z }
T 

+ 
1 
2 
m(l φ̇2)2 − mgl cos(φ1) | {z }

Ueff 
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Note: 

1 2Ueff = −mgl cos φ1 + m(− sin φ1ẏd)
2 � �2 

= −mgl cos φ1 +
1 
m sin2φ1 

1 
adω 

2 2 

� �2∂Ueff 1 = mgl sin φ1 + m sin (2φ) adω∂φ 2 

divide by ml to get our equation of motion for φ1 

2 Tricky Potentials 

Already in this course we have seen a few tricky potentials. 
For central potentials, angular momentu gives us an effective potential for r. 

Central � � � � � �21˙ ˙ ˙Ueff ~ ~ = Ueff r, = µ rφq, q φ U(r) + 
2
L2 
z⇒ Ueff (r, Lz) = U(r) + 

2µr2 

A homogeneous dissipative medium, which converts kinetic energy of the macro-
scopic to kinetic energy of the microscopic (i.e. heat) can also be treated as a 
velocity dependent potential 

Dissipative Z 
Udiss (q, q̇) = Ucon (q) − D (q̇) dt � � 

d ∂Lcon ∂Lcon ∂D ⇒ = − 
dt ∂q̇ ∂q ∂q̇ 
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And last time we saw another sort of tricky potential for rapidly oscillating 
fields or drives 

Rapid Drive 
2Ueff (q, q̇) = U(q) + 1 mq̇2 fast 

for q(t) = qslow(t) + qfast(t) 

These are all scalars. Need to note that Ueff comes from including the same T , 
which can be written as T (q), in U to get Ueff = U(q) + T (q). 

3 Lorentz Force 

Today we encounter another tricky potential, this one from 8.02. The force on a 
charged particle moving in E and B fields is (as you may recall) 

Lorentz force on particle with charge e (not q!)� � 
~ ~ ~F = e E + ~v × B 

~where E is the electric field and B~ is the magnetic field. 

Lorentz Force 

Many everyday objects use electric motors and/or generators, all of which de-
pend on the Lorentz force. 

I’m not going to use q here to avoid confusion. e is some charge and ~r is the 
Cartesian Coordinate of that charge. 
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Let’s say I have a small test charge constrained to move along a wire in an 
external B-field. The B-field can be along ẑ, and the wire can be a helical coil, like 
a spring. 

x = R cos φ ẋ = −R sin φ φ̇ 

y = R sin φ ẏ = R cos φ φ̇ 

z = αφ ż = α φ̇ 

How does the charge move? Ideas? Let’s find out... we need a potential for the 
Lorentz force � � � � 

˙ ~ ˙UL ~r, ~r = e Φ − A · ~r 

∂ ~ ~E = −rΦ (~r, t) − A (~r, t)
∂t 

~ ~B = r× A 
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Φ ≡ electric scalar potential 
~A ≡ magnetic vector potential 

1 ~ ~NB: for constant, uniform B-field, A = ~r × B 
2 

So, for our test charge we have 

B ~ ~B = Bẑ ⇒ A = {−y, x, 0}
2 

eB ~ ˙U = mgz − A · ~r = mgz + (yẋ− xẏ)
2 

eBR2 � � 
2 φ ˙= mgαφ + − sin2 φ − cos φ 

2 

� � � � 
1 2 1 ˙T = m ẋ2 + ẏ2 + ż = m R2 + α2 φ2 
2 2 

1 
� � eBR2 

⇒ L = m R2 + α2 φ̇2 − mgαφ + φ̇2 2| {z }
drop! 

The dynamics are unchanged by the B-field! Why? � � 
~F · v = ~v × B · ~v = 0 ⇒ no work done 

This will be true for any 1-D motion, so let’s try 2-D... 
How about a charge free to move in the y-z plane with a B-field in the x̂ direc-

tion? 

~ ~ BB = Bx̂ ⇒ A = {0, −z, y}� � 2 
1 2 eB⇒ L = m ẏ2 + ż + (yż − zẏ) − mgz 2 2 
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∂L eB ∂L y − eBFy = = z, ˙ py = = m ̇ z∂y 2 ∂ẏ 2 

y − eB eB ṗy = Fy ⇒ m¨ ż = ż2 2 

−eB eBFz = ẏ − mg, pz = mż + y2 2 

⇒ ÿ = βz, ˙ z̈ = −g − βẏ

with β = eB 
m 

These equations of motion are simple enough to solve, and the solution is in-
teresting...let’s see what happens for a particle that starts at rest. 

If you ignore g, you might guess that since the Lorentz force is ⊥ to ~v, the 
trajectory must be a circle. 

y(t) = a sin ωt ⇒ ẏ = −ωz, ÿ = −ω2 y 

z(t) = −a cos ωt ⇒ ż = ωy, z̈ = −ω2 z 

Another way to see that the trajectory must be a circle is to notice that 

... 
z = −βÿ = −β2ż = −ω2ż

with β = ω 

which is the time derivative of equation of motion for a harmonic oscillator with 
frequency β. 

Comparing with our equations of motion suggests that ω = β, but we have this 
pesky gravity... no problem, add − g t to y(t). This doesn’t change ÿ.β 
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g 
y(t) = a sin βt − t 

β 
g 

ẏ = aβ cos βt − 
β 

ż = aβ sin βt 

To start at rest, we need 

ẏ (t = 0) = 0 ⇒ a = − 
g 
β2 

y(t) = − 
g 
β2 

(sin βt + βt) 

z(t) = 
g 
β2 

cos βt 

gSo this particle doesn’t fall, it moves sideways with average velocity (forβ 
general initial conditions, you get sin and cos components for both y and z). 

We can quickly relate this result to particle accelerators, though our non-relativistic 
physics is clearly inadequate to get a good answer... 

For a particle moving in a plane ⊥ to gravity, and with our B-field pointing up, 
we can reuse the previous result 
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~for B = Bẑ ẍ = βẏ , ÿ = βẋ

x(t) = a sin βt ⇒ ẋ = aβ cos βt 

y(t) = −a cos βt ⇒ ẏ = aβ sin βt 

So if we start a proton with an initial velocity c in the x̂ direction... 

c mpcfor v~0 = cx̂ ⇒ a = = 
β eB 

for B ' 8 Tesla ⇒ a = 0.4 m 

with c = 3 × 108m/s, mp = 1.7 × 10−27 kg and e = 1.6 × 10−19 C. 
But CERN has a radius of 4.5 km! 
If we replace mp with the relativistic mass mr = Ep/c

2 we get the right answer: 

Ep Epmr = ∼ 104mp ⇒ ar = ∼ 4.2 km c2 eBc 

for Ep ≈ 10 Tev ≈ 1.6 × 10−6 J 
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4 Gauge Invariance 

~We have some freedom in choosing the magnetic vector potential A 

Gauge Transformation 
0 ∂ 

A~ 0 ~Φ = Φ − f = A + rf 
∂t � � 

B~ 0 A~ 0 ~ ~= r× = r× A + rf = B + r× (rf)| {z }
this is 0 

0 ∂ 
E~ 0 A~ 0 = −rΦ − = 

∂t � � � �∂ ∂ ~ ~= −r Φ − f − A + rf = E 
∂t ∂t 

What about our Lagrangian? 

Gauge Invariant Equation of Motion � �� � 
0 0 ∂ ∂ 

A~ 0L = Φ − e Φ − · ~r = L + e f + ~ṙ · f 
∂t ∂~r 

d 
= L + e f 

dt 

For Interesting physics associated with magnetic vector potential, google Aharnov-
Bohm effect. 
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