(14) Tricky Potentials

1 Kaptiza Example

Let’s try a slightly different pendulum system this time for our next example.

Kapitza
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The Lagrangian for this system, after dropping terms which contain only y4, which
is an explicit function of time, is

1 : :
L = g™ (l2gb2 + 21 sin¢gby’d> + mgl cos ¢

% (g—;) = ml (l¢ + cos ¢<ﬁyd + sin ¢Qd>

oL 0D ; j
8_gb _ 6’_¢> = ml (cos¢¢g'/d — gSiIl¢) — bo

which gives us the equation of motion.
A vertically driven pendulum is a bit of a strange thing; it doesn’t seem to work
as a driver!

lc’b’+lia5+(g+yd)sin¢ =0
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where the damping term is %qﬁ

Instead, the drive appears to modify gravity. This makes sense, due to the
equivalence principle. Interestingly, this let’s us explore parametric resonance...

Notice how the pendulum becomes excited with a drive at twice the resonance
frequency.

We won’t cover parametric resonance further, but LL.27 does. Methods for
understanding non-linear/anharmonic behavior are also covered in LL 28-29, but I
found the math unenelightening, so I won’t try to reproduce it here.



We also see strange behavior for a high frequency drive. Damping is not im-
portant for this, so let’s operate with b = 0. We can understand this by noticing that
the pendulum’s motion consists of a high frequency part (at the drive frequency)
and a low frequency part (swinging around).

Fast oscillation terms, to first order, are

Graphically this result is
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Returning to our equations of motion, but keeping ¢o < 1 and ég = —sing %

l(}ﬁl + w?sin ¢y + (g — wgyd) sin ¢ (1 — cos (/51%) =0

I61 + gsin ¢y + 2220 (w2 — gyy) =0

We are looking for the slow behavior, so let’s average over the fast drive period

Since yq = ag cos (wt)
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If we are close to ¢; ~ 7 (pointing up)

So, as we have seen, the Kapitza pendulum is stable around ¢ ~ 7 (i.e. inverted)
given a sufficiently fast drive.

Generally, when treating motion in a rapidly oscillating field, we can define an
effective potential

for us, this would be




Note:

2 Tricky Potentials

Already in this course we have seen a few tricky potentials.
For central potentials, angular momentu gives us an effective potential for r.

A homogeneous dissipative medium, which converts kinetic energy of the macro-
scopic to kinetic energy of the microscopic (i.e. heat) can also be treated as a
velocity dependent potential




And last time we saw another sort of tricky potential for rapidly oscillating
fields or drives

Rapid Drive
Ueff (Q7 q) = U(q) + %mq]%ast
for q(t) = qsiow(t) + qfast(t)

These are all scalars. Need to note that U, ¢y comes from including the same T,
which can be written as 7'(¢), in U to get Uesr = U(q) + T'(q).

3 Lorentz Force

Today we encounter another tricky potential, this one from 8.02. The force on a
charged particle moving in E and B fields is (as you may recall)

Lorentz force on particle with charge e (not ¢!)
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where F is the electric field and B is the magnetic field.

Lorentz Force
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Many everyday objects use electric motors and/or generators, all of which de-
pend on the Lorentz force.

I’'m not going to use g here to avoid confusion. e is some charge and 7 is the
Cartesian Coordinate of that charge.
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Let’s say I have a small test charge constrained to move along a wire in an
external B-field. The B-field can be along 2, and the wire can be a helical coil, like

a spring.
e el

How does the charge move? Ideas? Let’s find out... we need a potential for the
Lorentz force




So, for our test charge we have

The dynamics are unchanged by the B-field! Why?

F-v= (ﬁx E) - ¥ = 0 = no work done

This will be true for any 1-D motion, so let’s try 2-D...
How about a charge free to move in the y-z plane with a B-field in the & direc-
tion?




These equations of motion are simple enough to solve, and the solution is in-
teresting...let’s see what happens for a particle that starts at rest.

If you ignore g, you might guess that since the Lorentz force is L to v, the
trajectory must be a circle.

Another way to see that the trajectory must be a circle is to notice that

which is the time derivative of equation of motion for a harmonic oscillator with
frequency 3.

Comparing with our equations of motion suggests that w = 3, but we have this
pesky gravity... no problem, add —%t to y(¢). This doesn’t change .
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To start at rest, we need
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So this particle doesn’t fall, it moves sideways with average velocity % (for
general initial conditions, you get sin and cos components for both y and z).

We can quickly relate this result to particle accelerators, though our non-relativistic
physics is clearly inadequate to get a good answer...

For a particle moving in a plane _L to gravity, and with our B-field pointing up,
we can reuse the previous result



So if we start a proton with an initial velocity c in the Z direction...

with ¢ = 3 x 10%m/s, m, = 1.7 x 1072 kgand e = 1.6 x 1071° C.
But CERN has a radius of 4.5 km!
If we replace m,, with the relativistic mass m, = E,/c* we get the right answer:




4 Gauge Invariance

We have some freedom in choosing the magnetic vector potential A

What about our Lagrangian?

For Interesting physics associated with magnetic vector potential, google Aharnov-
Bohm effect.
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