e (17) Canonical Transforms

To motivate our next theoretical step, canonical transformations, let’s remind
ourselves how we use Lagrangians and Hamiltonians to solve mechanics problems.
I’1l use the simple pendulum as a concrete example

From here, you can continue on the Lagrangian path and...

or you can use these generalized momenta in the Hamiltonian



It may seem strange that we need to go through the Lagrangian to find the
momenta used in the Hamiltonian, but this just highlights a difference between
these two approaches.

for any Q(q) transform (invertable, differentiable,...) e.g. from Cartesian to polar
in 2D

Momenta result from our choice of coordinates

and you plug this into E-L and get the EoM. Easy.




Does this mean we need to construct L(g, ¢) every time we want to change
coordinates with H?

No! There are 3 other ways...

In each case we start with steps 1 and 2.

For the first path, we take step 3 and note that momenta are usually easy to

guess (e.g. p = mr).

and check the Poisson Brackets (necessary and sufficient)




Of course, we only have one generalized coordinate, ¢, in this example. In
general, you will have %n (n — 1) non-trivial PB to compute which give zero, and
n of them which give 1, to perform this check. If n > 2, you’ll need a computer or
a free weekend.

Paths 2 and 3 are similar and require some back story. Remember that curious
fact about Lagrangians that adding the total time derivative of a function doesn’t
change the equation of motion? (LL eq. 2.8) I promised we would get back to that
and here we are.

If we limit F' to be a function of one old variable (p or ¢q) and one new variable (P
or @) it is called a “generating function”. There are 4 ways we can do this, each
with its own implications for the transformation (from p, g to P, Q) that results.
The general rules are




So, if you want to make a coordinate transform with a Hamiltonian, you either do
it through the Lagrangian, you guess and check with Poisson Brackets, or you find
a generating function.

Let’s do this for our pendulum example. Given a coordinate transform from
old to new, we use Fy

This generating function is constructed to make g—l;f trivially give us the desired
Q; (point transform). The second differential gives us the new momenta.




Since I only have one new momenta and two old, this is over constrained, and both
give the same answer. The cartesian momenta are

where we inverted either expression to get p,. This matches our guess, so we have
H(p,q).

We can also use the F3 generator function in a similar way. Again, we trivially
recover our point transform, with the first differential equation,

and the second gives us the new momenta P.

For our example, in which the coordinate transform is most easily expressed as
q (Q), this path through F3 is the most direct way to go from step 2 to step 5

6



without passing through L (at the price of needing to invert P; = f (9] q)).

Of course, we have explored only a very limited range of generator functions.
These needn’t result in point transforms; the Hamiltonian is not limited like the
Lagrangian to point transforms Q (¢) = Q (¢,q). Rather, you can have Q (p, q)
and P (p, q).

For instance, let’s try this...

Dropping the constant gives us the Hamiltonian of a simple harmonic oscillator

with frequency w = \/% .

Now we need to write H (pg, ) based on H(pg, ¢), just like we got H (pg, ¢)
from H in cartesian coordinates.



Now that is a simple Hamiltonian!

What does this mean physically? Let’s return to our angular coordinate ¢;

so 6 is the phase of the oscillator, and py is related to the energy of the oscillation.
(Note that H = FE as expected.)

So this generator function moved us into a “cordinate” system where our “mo-
mentum” was actually energy (a constant) and “position” was actually the phase of
the harmonic oscillator solution!

This would not work with a Lagrangian!
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