
  (17) Canonical Transforms 
To motivate our next theoretical step, canonical transformations, let’s remind 

ourselves how we use Lagrangians and Hamiltonians to solve mechanics problems. 
I’ll use the simple pendulum as a concrete example 

How to do mechanics, step by step 
1) Write T and U in Cartesian coordinates 

1 � �
2T (~ṙ) = m ẋ2 + ẏ , U(~r) = mgy 

2 

2) Write transformation to generalized coordinates 

~r(q) e.g. x = R sin φ , y = −R cos φ 

~ṙ(q, q̇) e.g. ẋ = R cos φ φ̇ , ẏ = R sin φ φ̇

3) Write T (q, q̇) and U(q) � � 
T φ, φ̇ =

1 
mR2φ̇2 , U (φ) = −mgR cos φ 

2 

4) Compute generalized momenta 

pi = 
∂L 

, with L = T − U e.g. pφ = mR2φ̇
∂q̇i 

From here, you can continue on the Lagrangian path and... 

Lagrangian 
∂L 5) Compute Fi = ∂qi e.g. Fφ = mgR sin φ 

6) Find equations of motion with ṗi = Fi e.g. φ ¨ = g sin φR 

or you can use these generalized momenta in the Hamiltonian 
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Hamiltonian 
2p5) Write T (p, q) e.g. T (pφ, φ) = φ 

2mR2 

6) Find equations of motion with H = T + U and 

∂H ∂H pφ 
q̇ = , ṗ = − e.g. φ̇ = , ṗφ = mgR sin φ 

∂p ∂q mR2 

It may seem strange that we need to go through the Lagrangian to find the 
momenta used in the Hamiltonian, but this just highlights a difference between 
these two approaches. 

The Lagrangian is based on a choice of generalized coordinates. Any 
choice will do, and the momenta are a result of that choice. 

� � � � 
L0 Q, Q̇ = L q(Q), q̇(Q, Q̇) 

for any Q(q) transform (invertable, differentiable,...) e.g. from Cartesian to polar 
in 2D � �p

−12Q(q) ⇒ r = x2 + y , φ = tan
y � � x 

⇒ L0 r, φ, r, ˙ φ̇ = L (x(r, φ), y(r, φ), ẋ(...), ẏ(...)) 

Momenta result from our choice of coordinates 

∂L ∂L0 
pi = , Pi = 

∂q̇i ∂Q̇i 

and you plug this into E-L and get the EoM. Easy. 

The Hamiltonian, on the other hand, offers no clear connection between 
p and q. You have a lot more freedom in that q need note even be a 
spatial coordinate, nor p related to the velocity of anything. But, if you 
forego that freedom and q is a generalized spatial coordinate, then... 
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Given some generalized coordinates qi, 
∂L the momenta pi = ∂q̇i are those required for H(p, q) 

Does this mean we need to construct L(q, q̇) every time we want to change 
coordinates with H? 

No! There are 3 other ways... 
In each case we start with steps 1 and 2. 
For the first path, we take step 3 and note that momenta are usually easy to 

guess (e.g. p~ = m~ṙ). 

Path 1: “guess and check” 
Guess your momenta P (p, q) 

e.g. pφ = mR2φ̇ = Lz = xpy − ypx 

and check the Poisson Brackets (necessary and sufficient) 

[Qj, Qk ]pq = 0 , [Pj, Pk ]pq = 0 , [Pj, Qk ]pq = δjk � � � � 
−x −x−1e.g. [φ, φ ] = [tan−1 , tan ] = 0 
y y 

[pφ, pφ ] = 0 ([f, f ] = 0 for any f) 

� � 
x−1[pφ, φ ] = [xpy − ypx, tan ] 
y� � � � 

−x −x−1 −1 = x [py, tan ] − y [px, tan ] 
y y� � � � 

∂ −x ∂ −x−1 −1 = x tan − y tan
∂y y ∂x y 
2 2x y

= + = 1 
R2 R2 
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Of course, we only have one generalized coordinate, φ, in this example. In 
3general, you will have n (n − 1) non-trivial PB to compute which give zero, and 2 

n of them which give 1, to perform this check. If n > 2, you’ll need a computer or 
a free weekend. 

Result: 
2 2 2 p + p px y φ

H = + mgy ⇒ H 0 = − mgR cos φ 
2m 2mR2 

Paths 2 and 3 are similar and require some back story. Remember that curious 
fact about Lagrangians that adding the total time derivative of a function doesn’t 
change the equation of motion? (LL eq. 2.8) I promised we would get back to that 
and here we are. 

Recall: L0 = L + 
d
f (q, t) ⇒ same EoM 

dt� � 
and L (q, q, t˙ ) = L0 Q, t Q, ˙ ⇒ same E-L 

and L = pq̇ − H , L0 = PQ̇− H 0 

⇒ pq̇ − H = PQ̇− H 0 + 
d
F (q, Q, p, P, t)

dt 

If we limit F to be a function of one old variable (p or q) and one new variable (P 
or Q) it is called a “generating function”. There are 4 ways we can do this, each 
with its own implications for the transformation (from p, q to P , Q) that results. 
The general rules are 

∂F1 ∂F1for F1 (q, Q) pi = , Pi = − 
∂qi ∂Qi 

∂F2 ∂F2for F2 (q, P ) pi = , Qi = 
∂qi ∂Pi 

4 



∂F3 ∂F3for F3 (p, Q) qi = − , Pi = − 
∂pi ∂Qi 

∂F4 ∂F4for F4 (p, P ) qi = − , Qi = 
∂pi ∂Pi 

So, if you want to make a coordinate transform with a Hamiltonian, you either do 
it through the Lagrangian, you guess and check with Poisson Brackets, or you find 
a generating function. 

Let’s do this for our pendulum example. Given a coordinate transform from 
old to new, we use F2 P ~ ~Given Q~ (~q), use F2(q, P ) = Q(~q) · P = Qi(q~) Pi 

∂F2 ∂F2⇒ Qi = = Qi(q) , pi = 
∂Pi ∂qi 

For pendulum � � 

Q(~q) ⇒ φ(x, y) = tan−1 −x 
y� � 

F2 = ~Q(~q) · ~P ⇒ F2(x, y, pφ) = tan−1 −x 
pφ 

y 

This generating function is constructed to make ∂F2 trivially give us the desired ∂Pi 

Qi (point transform). The second differential gives us the new momenta. 

� � � � 
∂F2 ∂ −x −y cos φ 

px = = pφ tan−1 = pφ = pφ
∂x ∂x y R2 R� � � �∂F2 ∂ −x x sin φ 

py = = pφ tan−1 = pφ = pφ
∂y ∂y y R2 R 
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Since I only have one new momenta and two old, this is over constrained, and both 
give the same answer. The cartesian momenta are 

px = mẋ = mR cos φφ̇⇒ pφ = mR2φ̇

py = mẏ = mR sin φφ̇

where we inverted either expression to get pφ. This matches our guess, so we have 
H(p, q). 

We can also use the F3 generator function in a similar way. Again, we trivially 
recover our point transform, with the first differential equation, � � � � 

~ ~Given ~ Q , use F3(~ Q) = −~ Q pq p, ~ q · ~� �∂F3 ∂F3~⇒ qi = − = q Q , Pi = − 
∂pi ∂Qi 

and the second gives us the new momenta P . 

For pendulum 
~~ Q) → x = R sin φ , y = −R cos φq( 

F3(px, py, φ) = −R sin φ px + R cos φ py 

∂F3 
pφ = − = R (cos φ px + sin φ py)

∂φ 
= R (cos φ (mẋ) + sin φ (mẏ))� � � � �� 
= mR cos φ R cos φ φ̇ + sin φ R sin φ φ̇

= mR2φ̇

For our example, in which the coordinate transform is most easily expressed as � � 
~~ Q is the most direct way to go from step 2 to step 5 q , this path through F3 
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without passing through L (at the price of needing to invert Pi = f (~ ~p, q)). 

Of course, we have explored only a very limited range of generator functions. 
These needn’t result in point transforms; the Hamiltonian is not limited like the 
Lagrangian to point transforms Q (q) ⇒ Q̇ (q, q̇). Rather, you can have Q (p, q) 
and P (p, q). 

For instance, let’s try this... 

Transform H from φ, pφ 

2pφ
H(pφ, φ) = − mgR cos φ 

2mR2 

2p k 
φ2' φ 

+ + const for φ � 1 
2I 2 

gI 
with I = mR2 , k = mgR = = Iω2 . 

R 

Dropping the constant gives us the Hamiltonian of a simple harmonic oscillator q 
gwith frequency ω = R . r 

Iωφ2 g
try F1 (φ, θ) = with ω = 

2 tan θ R 
∂F1 Iωφ 

pφ = = 
∂φ tan θ 
Iωφ ⇒ tan θ = 
pφ 

∂F1 Iωφ2 ∂ −1 Iωφ2 

pθ = − = = 
∂θ 2 ∂θ tan θ 2 sin2 θ 

Now we need to write H(pθ, θ) based on H(pφ, φ), just like we got H(pφ, φ) 
from H in cartesian coordinates. 
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Find H(pθ, θ) 
2pφ Iω2 Iω2φ2 Iω2φ2 

φ2H(pθ, θ) = + = + 
2I 2 2 tan2 θ 2 
1 1 

use + 1 = ⇒ H = ωpθ 
tan2 θ sin2 θ 

Now that is a simple Hamiltonian! 

EoM for θ 
∂H ∂H 

θ̇ = = ω , ṗθ = − = 0 
∂pθ ∂θ 

θ = ωt + θ0 , pθ = const 

What does this mean physically? Let’s return to our angular coordinate φ; r 
2pθ

φ = sin (ωt + θ0)
Iω p

pφ = 2pθIω cos (ωt + θ0) 

SHO: E =
1 
Iω2A2 ⇒ pθ = 

E 
2 ω 

so θ is the phase of the oscillator, and pθ is related to the energy of the oscillation. 
(Note that H = E as expected.) 

So this generator function moved us into a “cordinate” system where our “mo-
mentum” was actually energy (a constant) and “position” was actually the phase of 
the harmonic oscillator solution! 

This would not work with a Lagrangian! 

8 



MIT OpenCourseWare 
https://ocw.mit.edu 

8.223 Classical Mechanics II 
January IAP 2017 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu
https://ocw.mit.edu/terms



