(17) Canonical Transforms

To motivate our next theoretical step, canonical transformations, let's remind ourselves how we use Lagrangians and Hamiltonians to solve mechanics problems. I'll use the simple pendulum as a concrete example

How to do mechanics, step by step 1) Write T and U in Cartesian coordinates $T(\dot{\vec{r}}) = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2)$, $U(\vec{r}) = mgy$

2) Write transformation to generalized coordinates

$$\vec{r}(q)$$
 e.g. $x = R \sin \phi$, $y = -R \cos \phi$
 $\dot{\vec{r}}(q, \dot{q})$ e.g. $\dot{x} = R \cos \phi \dot{\phi}$, $\dot{y} = R \sin \phi \dot{\phi}$

3) Write
$$T(q, \dot{q})$$
 and $U(q)$
 $T\left(\phi, \dot{\phi}\right) = \frac{1}{2}mR^2\dot{\phi}^2$, $U(\phi) = -mgR\cos\phi$

4) Compute generalized momenta

$$p_i = \frac{\partial L}{\partial \dot{q}_i}$$
, with $L = T - U$ e.g. $p_{\phi} = mR^2 \dot{\phi}$

From here, you can continue on the Lagrangian path and...

Lagrangian 5) Compute $F_i = \frac{\partial L}{\partial q_i}$ e.g. $F_{\phi} = mgR\sin\phi$ 6) Find equations of motion with $\dot{p}_i = F_i$ e.g. $\ddot{\phi} = \frac{g}{R}\sin\phi$

or you can use these generalized momenta in the Hamiltonian

Hamiltonian 5) Write T(p,q) e.g. $T(p_{\phi}, \phi) = \frac{p_{\phi}^2}{2mR^2}$ 6) Find equations of motion with H = T + U and $\dot{q} = \frac{\partial H}{\partial p}$, $\dot{p} = -\frac{\partial H}{\partial q}$ e.g. $\dot{\phi} = \frac{p_{\phi}}{mR^2}$, $\dot{p}_{\phi} = mgR\sin\phi$

It may seem strange that we need to go through the Lagrangian to find the momenta used in the Hamiltonian, but this just highlights a difference between these two approaches.

The Lagrangian is based on a choice of generalized coordinates. Any choice will do, and the momenta are a result of that choice.

$$L'\left(Q,\dot{Q}\right) = L\left(q(Q),\dot{q}(Q,\dot{Q})\right)$$

for any Q(q) transform (invertable, differentiable,...) e.g. from Cartesian to polar in 2D

$$Q(q) \Rightarrow r = \sqrt{x^2 + y^2} , \quad \phi = \tan^{-1}\left(\frac{y}{x}\right)$$
$$\Rightarrow L'\left(r, \phi, \dot{r}, \dot{\phi}\right) = L\left(x(r, \phi), y(r, \phi), \dot{x}(...), \dot{y}(...)\right)$$

Momenta result from our choice of coordinates

$$p_i = \frac{\partial L}{\partial \dot{q}_i}$$
, $P_i = \frac{\partial L'}{\partial \dot{Q}_i}$

and you plug this into E-L and get the EoM. Easy.

The Hamiltonian, on the other hand, offers no clear connection between *p* and *q*. You have a lot more freedom in that *q* need note even be a spatial coordinate, nor *p* related to the velocity of anything. But, if you forego that freedom and *q* is a generalized spatial coordinate, then...

Given some generalized coordinates q_i , the momenta $p_i = \frac{\partial L}{\partial \dot{q}_i}$ are those required for H(p,q)

Does this mean we need to construct $L(q,\dot{q})$ every time we want to change coordinates with H?

No! There are 3 other ways...

In each case we start with steps 1 and 2.

For the first path, we take step 3 and note that momenta are usually easy to guess (e.g. $\vec{p} = m\dot{\vec{r}}$).

Path 1: "guess and check" Guess your momenta P(p,q)e.g. $p_{\phi} = mR^2 \dot{\phi} = L_z = xp_y - yp_x$

and check the Poisson Brackets (necessary and sufficient)

$$\begin{split} & [Q_j, Q_k]_{pq} = 0 , \quad [P_j, P_k]_{pq} = 0 , \quad [P_j, Q_k]_{pq} = \delta_{jk} \\ & \text{e.g.} \quad [\phi, \phi] = [\tan^{-1}\left(\frac{-x}{y}\right), \tan^{-1}\left(\frac{-x}{y}\right)] = 0 \\ & [p_{\phi}, p_{\phi}] = 0 \quad ([f, f] = 0 \text{ for any } f) \end{split}$$

$$[p_{\phi}, \phi] = [xp_y - yp_x, \tan^{-1}\left(\frac{x}{y}\right)]$$

$$= x [p_y, \tan^{-1}\left(\frac{-x}{y}\right)] - y [p_x, \tan^{-1}\left(\frac{-x}{y}\right)]$$

$$= x \frac{\partial}{\partial y} \tan^{-1}\left(\frac{-x}{y}\right) - y \frac{\partial}{\partial x} \tan^{-1}\left(\frac{-x}{y}\right)$$

$$= \frac{x^2}{R^2} + \frac{y^2}{R^2} = 1$$

Of course, we only have one generalized coordinate, ϕ , in this example. In general, you will have $\frac{3}{2}n(n-1)$ non-trivial PB to compute which give zero, and n of them which give 1, to perform this check. If n > 2, you'll need a computer or a free weekend.

Result:

$$H = \frac{p_x^2 + p_y^2}{2m} + mgy \Rightarrow H' = \frac{p_\phi^2}{2mR^2} - mgR\cos\phi$$

Paths 2 and 3 are similar and require some back story. Remember that curious fact about Lagrangians that adding the total time derivative of a function doesn't change the equation of motion? (LL eq. 2.8) I promised we would get back to that and here we are.

Recall:
$$L' = L + \frac{d}{dt}f(q,t) \Rightarrow$$
 same EoM
and $L(q,\dot{q},t) = L'(Q,\dot{Q},t) \Rightarrow$ same E-L
and $L = p\dot{q} - H$, $L' = P\dot{Q} - H'$
 $\Rightarrow p\dot{q} - H = P\dot{Q} - H' + \frac{d}{dt}F(q,Q,p,P,t)$

If we limit F to be a function of one old variable (p or q) and one new variable (P or Q) it is called a "generating function". There are 4 ways we can do this, each with its own implications for the transformation (from p, q to P, Q) that results. The general rules are

for
$$F_1(q, Q)$$
 $p_i = \frac{\partial F_1}{\partial q_i}$, $P_i = -\frac{\partial F_1}{\partial Q_i}$
for $F_2(q, P)$ $p_i = \frac{\partial F_2}{\partial q_i}$, $Q_i = \frac{\partial F_2}{\partial P_i}$

for
$$F_3(p,Q)$$
 $q_i = -\frac{\partial F_3}{\partial p_i}$, $P_i = -\frac{\partial F_3}{\partial Q_i}$
for $F_4(p,P)$ $q_i = -\frac{\partial F_4}{\partial p_i}$, $Q_i = \frac{\partial F_4}{\partial P_i}$

So, if you want to make a coordinate transform with a Hamiltonian, you either do it through the Lagrangian, you guess and check with Poisson Brackets, or you find a generating function.

Let's do this for our pendulum example. Given a coordinate transform from old to new, we use ${\cal F}_2$

Given
$$\vec{Q}(\vec{q})$$
, use $F_2(q, P) = \vec{Q}(\vec{q}) \cdot \vec{P} = \sum Q_i(\vec{q}) P_i$
 $\Rightarrow Q_i = \frac{\partial F_2}{\partial P_i} = Q_i(q) , \quad p_i = \frac{\partial F_2}{\partial q_i}$

For pendulum

$$Q(\vec{q}) \Rightarrow \phi(x,y) = \tan^{-1}\left(\frac{-x}{y}\right)$$
$$F_2 = \vec{Q}(\vec{q}) \cdot \vec{P} \Rightarrow F_2(x,y,p_{\phi}) = \tan^{-1}\left(\frac{-x}{y}\right)p_{\phi}$$

This generating function is constructed to make $\frac{\partial F_2}{\partial P_i}$ trivially give us the desired Q_i (point transform). The second differential gives us the new momenta.

$$p_x = \frac{\partial F_2}{\partial x} = p_\phi \frac{\partial}{\partial x} \tan^{-1} \left(\frac{-x}{y}\right) = p_\phi \left(\frac{-y}{R^2}\right) = p_\phi \frac{\cos \phi}{R}$$
$$p_y = \frac{\partial F_2}{\partial y} = p_\phi \frac{\partial}{\partial y} \tan^{-1} \left(\frac{-x}{y}\right) = p_\phi \left(\frac{x}{R^2}\right) = p_\phi \frac{\sin \phi}{R}$$

Since I only have one new momenta and two old, this is over constrained, and both give the same answer. The cartesian momenta are

$$p_x = m\dot{x} = mR\cos\phi\dot{\phi} \Rightarrow p_{\phi} = mR^2\dot{\phi}$$
$$p_y = m\dot{y} = mR\sin\phi\dot{\phi}$$

where we inverted either expression to get p_{ϕ} . This matches our guess, so we have H(p,q).

We can also use the F_3 generator function in a similar way. Again, we trivially recover our point transform, with the first differential equation,

Given
$$\vec{q}\left(\vec{Q}\right)$$
, use $F_3(\vec{p}, \vec{Q}) = -\vec{q}\left(\vec{Q}\right) \cdot \vec{p}$
 $\Rightarrow q_i = -\frac{\partial F_3}{\partial p_i} = q\left(\vec{Q}\right) , \quad P_i = -\frac{\partial F_3}{\partial Q_i}$

and the second gives us the new momenta P.

For pendulum

$$\vec{q}(\vec{Q}) \rightarrow x = R \sin \phi , \ y = -R \cos \phi$$

 $F_3(p_x, p_y, \phi) = -R \sin \phi \ p_x + R \cos \phi \ p_y$

$$p_{\phi} = -\frac{\partial F_3}{\partial \phi} = R \left(\cos \phi \, p_x + \sin \phi \, p_y \right)$$

= $R \left(\cos \phi \left(m \dot{x} \right) + \sin \phi \left(m \dot{y} \right) \right)$
= $m R \left(\cos \phi \left(R \cos \phi \, \dot{\phi} \right) + \sin \phi \left(R \sin \phi \, \dot{\phi} \right) \right)$
= $m R^2 \dot{\phi}$

For our example, in which the coordinate transform is most easily expressed as $\vec{q}(\vec{Q})$, this path through F_3 is the most direct way to go from step 2 to step 5

without passing through L (at the price of needing to invert $P_i = f(\vec{p}, \vec{q})$).

Of course, we have explored only a very limited range of generator functions. These needn't result in point transforms; the Hamiltonian is not limited like the Lagrangian to point transforms $Q(q) \Rightarrow \dot{Q}(q, \dot{q})$. Rather, you can have Q(p, q) and P(p, q).

For instance, let's try this...

Fransform
$$H$$
 from ϕ , p_{ϕ}

$$H(p_{\phi}, \phi) = \frac{p_{\phi}^2}{2mR^2} - mgR\cos\phi$$

$$\simeq \frac{p_{\phi}^2}{2I} + \frac{k}{2}\phi^2 + \text{const} \quad \text{for} \quad \phi \ll 1$$
with $I = mR^2$, $k = mgR = \frac{gI}{R} = I\omega^2$.

Dropping the constant gives us the Hamiltonian of a simple harmonic oscillator with frequency $\omega = \sqrt{\frac{g}{R}}$.

try
$$F_1(\phi, \theta) = \frac{I\omega\phi^2}{2\tan\theta}$$
 with $\omega = \sqrt{\frac{g}{R}}$
 $p_{\phi} = \frac{\partial F_1}{\partial\phi} = \frac{I\omega\phi}{\tan\theta}$
 $\Rightarrow \tan\theta = \frac{I\omega\phi}{p_{\phi}}$
 $p_{\theta} = -\frac{\partial F_1}{\partial\theta} = \frac{I\omega\phi^2}{2}\frac{\partial}{\partial\theta}\frac{-1}{\tan\theta} = \frac{I\omega\phi^2}{2\sin^2\theta}$

Now we need to write $H(p_{\theta}, \theta)$ based on $H(p_{\phi}, \phi)$, just like we got $H(p_{\phi}, \phi)$ from H in cartesian coordinates.

Find
$$H(p_{\theta}, \theta)$$

 $H(p_{\theta}, \theta) = \frac{p_{\phi}^2}{2I} + \frac{I\omega^2}{2}\phi^2 = \frac{I\omega^2\phi^2}{2\tan^2\theta} + \frac{I\omega^2\phi^2}{2}$
use $\frac{1}{\tan^2\theta} + 1 = \frac{1}{\sin^2\theta} \Rightarrow H = \omega p_{\theta}$

Now that is a simple Hamiltonian!

EoM for
$$\theta$$

 $\dot{\theta} = \frac{\partial H}{\partial p_{\theta}} = \omega$, $\dot{p}_{\theta} = -\frac{\partial H}{\partial \theta} = 0$
 $\theta = \omega t + \theta_0$, $p_{\theta} = \text{const}$

What does this mean physically? Let's return to our angular coordinate ϕ ;

$$\phi = \sqrt{\frac{2p_{\theta}}{I\omega}} \sin(\omega t + \theta_0)$$

$$p_{\phi} = \sqrt{2p_{\theta}I\omega} \cos(\omega t + \theta_0)$$
SHO:
$$E = \frac{1}{2}I\omega^2 A^2 \Rightarrow p_{\theta} = \frac{E}{\omega}$$

so θ is the phase of the oscillator, and p_{θ} is related to the energy of the oscillation. (Note that H = E as expected.)

So this generator function moved us into a "cordinate" system where our "momentum" was actually energy (a constant) and "position" was actually the phase of the harmonic oscillator solution!

This would not work with a Lagrangian!

MIT OpenCourseWare https://ocw.mit.edu

8.223 Classical Mechanics II January IAP 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.