
Lecture (3)

Today:

• Principle of Least Action

• Euler-Lagrange Equations

For tomorrow

1. read LL 1-5 again (really!)

2. do pset problems 7-9

1 Principle of Least Action (PLA)

Principle of Least Action (PLA):
for some L(q, q̇, t), the motion of a system minimizes
S =

∫ t2
t1
L dt, where S = “action”

for a given q(t1) and q(t2)

S is the action, and L is the Lagrangian. In the most general case L need not
be T − U . But in most interesting cases, L = T − U .

Let’s look at some simple examples.

Free Particle in 1D

⇒ U = 0⇒ L =
1

2
mq̇2
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PLA

The PLA is not like Newtonian thinking. You assume that you KNOW THE
END POINTS, and ask what happened in between. With F = ma, you assume
you know the initial position AND VELOCITY, and then move forward in time.

For the PLA any trial path is valid. The one with minimal S is the true path.
For this example, I’ll consider parabolic paths.

Constant Velocity Path

t1 = 0 , q(t1) = q1 = 0

q(t) = at+ bt2 , q(t2) = q2 = at2 + bt22

⇒ a =
q2
t2
− bt2 = v2 − bt2

where v2 =
q2
t2

This leaves us b as a free parameter which we can adjust to find the path with
minimum action.
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S =

∫ t2

0

1

2
mq̇2dt , q̇ = a+ 2bt

Mathematica!⇒ S =
1

2
mt2(v

2
2 +

b2t22
3

)

minimum at b = 0

So, free particles move at constant velocity. Newton’s 1st Law! Inertia!
(not really a surprise, I guess...)
Let’s try again, but this time with a simple potential.

Simple Potential

U = mgq ⇒ L =
1

2
mq̇2 −mgq

⇒ S = m

∫ t2

0

1

2
(a+ 2bt)2 − g(at+ bt2)dt

⇒ S =
1

2
mt2(v2(v2 − gt2) +

1

3
t22(b

2 + bg))

∂S

∂b
= 0⇒ 2b+ g = 0⇒ b = −g

2

So we found the parabolic path with minimum action to be the one you would
expect from 8.01.

a = v2 − bt2 = v2 +
gt2
2

= q̇(t = 0) = v0

q(t) = v0t−
1

2
gt2

The initial velocity is just what a projectile needs to fly a distance q2 in time t2
with acceleration g.
⇒ Projectile motion results from PLA!
Of course the PLA does’t say anything about parabolic paths. Any trial path

will do! How do you know the true path?
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The trick is to assume you know the path and then show you are correct by
trying to adjust it. (This comes from from the Calculus of Variations, see Marion
& Thornton chapter 5 for more info.)

S ′ =

∫ t2

t1

L(q′, q̇′, t)dt

with q′(t)︸︷︷︸
trial path

= q(t)︸︷︷︸
true path

+ η(t)︸︷︷︸
deviation

, ⇒ q̇′ = q̇ + η̇

q′(t1) = q(t1)⇒ η(t1) = 0

q′(t2) = q(t2)⇒ η(t2) = 0

PLA says S′ ≈ S for small η (first order)

S ′ − S =

∫ t2

t1

L(q′, q̇′, t)− L(q, q̇, t)︸ ︷︷ ︸
δL

dt

L(q′, q̇′, t) ≈ L(q, q̇, t) +
∂L

∂q
η +

∂L

∂q̇
η̇

⇒ S ′ − S ≈
∫ t2

t1

(
∂L

∂q
η +

∂L

∂q̇
η̇

)
dt

d

dt

(
∂L

∂q̇
η

)
= η

d

dt

(
∂L

∂q̇

)
+
∂L

∂q̇
η̇

⇒ S ′ − S ≈
∫ t2

t1

η

(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
dt+

∫ t2

t1

d

dt

(
∂L

∂q̇
η

)
dt︸ ︷︷ ︸

∂L
∂q̇ η|

t2
t1
=0

since η(t1) = η(t2) = 0

We are looking for a true path with S′ − S = 0 for any small deviation η(t).
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S ′ − S =

∫ t2

t1

η

(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
dt = 0

for any η

⇒ ∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 , Euler-Lagrange

And thus we see that the true path must be a solution to the E-L equation! (It is not
an accident that this is also the generalization that worked in yesterday’s lecture.)

The PLA gives us N second order ODEs for a system with N DOFs. To find the
path of our system through our generalized coordinate space, we should provide
2N initial conditions, and solve N 2nd order ODEs. (Mostly, we will keep to N ∈{

1,2,3
}

).
A note about notation: Generally I will write q without the subscript i (as noted

yesterday). You can think of this as the 1D case. If you want the ND case, just add
i to all of the q’s and q̇’s. If the expression does not have i as a free index, sum over
it. For example, the Euler Lagrange Equation

d

dt

(
∂L

∂q̇

)
=
∂L

∂q
→ d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi

or T =
1

2
mq̇2 → T =

1

2
m
∑

q̇i
2

or
d

dt
f(q, t) =

∂f

∂t
+
∂f

∂q
q̇ → d

dt
f =

∂f

∂t
+
∑ ∂f

∂qi
q̇i

(Similar to Einstein summation notation). The same is true for multiple particles:

T =
1

2
mq̇2 ⇒ T =

1

2

∑
n

mn

∑
in

q̇2in

I will try to avoid the index jungle as much as possible by sticking to 1 particle
in 1D when writing equations.

NB:
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~q ≡ {qi∀i} ≡ q

e.g. ~r = {x, y, z} or {r, φ, θ}

2 Generalized Forces and Momenta

Briefly, here is how we get F = ma from E-L

if L =
1

2
mq̇2 − U(q)

Fi ≡
∂L

∂qi
= −∂U

∂qi
since T not a function of q

ṗi ≡
d

dt

(
∂L

∂q̇i

)
=

d

dt
(mq̇i) since U not a function of q̇

E-L
∂L

∂q
=

d

dt

(
∂L

∂q̇

)
⇒ ~F = ~̇p (i.e. Newton)

So, while F = ma gets tricky when these conditions are not met, E-L just works;
the PLA just got us a very general form of Newton’s second law. As such, we will
need to give names to the generalizations are of force and momentum that we are
used to. They are:

Fi ≡ generalized force for coordinate qi
pi ≡ generalized momentum for velocity q̇i

Note that the units associated with these generalized forces and momenta may not
be what you expect.
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Units

[U ] = energy = J =
kg m2

s2

[Fi] =
energy
[qi]

e.g.
kg m

s2
if [qi] = meters

[pi] =
energy× time

[qi]
e.g.

kg m
s

if [qi] = meters

However, since the units of qi could be anything (e.q. unitless for angles in spheri-
cal coordinates) the units of Fi and pi may be unusual.

3 Math Review

Before we go on to more physics, let’s review our mathematical tools.

Chain Rule
d

dx
f(a, b) =

(
da

dx

)(
∂f

∂a

)
+

(
db

dx

)(
∂f

∂b

)
Total Derivative

d

dt
f(q, q̇, t) =

∂f

∂t
+ q̇

∂f

∂q
+ q̈

∂f

∂q̇

Product Rule

b
da

dx
=

d

dx
(ab)− adb

dx

Integration by Parts∫ x2

x1

b
da

dx
dx = ab|x2x1 −

∫ x2

x1

a
db

dx
dx
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We will have q and q̇ as the only implicit functions of time (i.e. we don’t know
q and q̇ until we solve the equations of motion). We will also generally only have
total TIME derivatives. All other are “easy” partial derivatives like ∂

∂q or ∂
∂q̇ .

NB: q̇ = d
dtq(t) =

∂
∂tq(t)

4 Lagrangian Workflow

The general workflow for solving problems with Lagrangian Mechanics is:

Lagrangian Workflow:

1. pick generalized coordinates

2. determine L(q, q̇, t)

3. compute Fi and ṗi to find EoM

Finding L(q, q̇, t) requires T (q, q̇) and U(q, t)
Usually U(q, t) is given. What about T (q, q̇)?

The Lagrangian formalism is very powerful in that we can pick any coordinate
we like, but there is a price to pay: the kinetic energy is complicated.

Kinetic Energy

T =
1

2
m
∑
j,k

ajkq̇j q̇k, for each particle

where ajk =
∑
i

∂ri
∂qj

∂ri
∂qk

, ~r = {x, y, z}.

Note that we rely on Cartesian coordinates ~r to find the ajk coefficients (see also
Marion & Thornton chapter 6.8, but beware of notational differences).
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if ~q = {x, y, z}

axx =

(
∂x

∂x

)2

+

(
∂y

∂x

)2

+

(
∂z

∂x

)2

= 1

axy =
∂x

∂x

∂x

∂y
+
∂y

∂x

∂y

∂y
+
∂z

∂x

∂z

∂y
= 0

⇒ T =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
In Cartesian coordinates this is nothing special, but in others it is tricky. See

LL 4.4-4.6.

Let’s work through an example to show how all of this machinery works. I will
just do 2D projectile motion (e.g. mgh potential), but I will make the unforgivable
mistake of using polar coordinates. This will demonstrate the full process in detail,
and the value of picking the right coordinates!
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2D Projectile Motion

~q = {r, φ}
x = r cosφ , y = r sinφ

U = mgy = mgr sinφ
∂x

∂r
= cosφ ,

∂y

∂r
= sinφ

∂x

∂φ
= −r sinφ , ∂y

∂φ
= r cosφ

In Cartesian Coordinates

T =
1

2
m

(
(
∂x

∂r
)2(
∂y

∂r
)2
)
ṙ2 +

2

(
∂x

∂r

∂x

∂φ
+
∂y

∂r

∂y

∂φ

)
ṙφ̇+

(
(
∂x

∂φ
)2 + (

∂y

∂φ
)2)φ̇2

)
T =

1

2
m
(
(cos2 φ+ sin2 φ)ṙ2 +

2(−r cosφ sinφ+ r sinφ cosφ)ṙφ̇+

(r2 sin2 φ+ r2 cos2 φ)φ̇2
)

T =
1

2
m(ṙ2 + r2φ̇2)

now we have kinetic energy in 2D polar coordinates

L = T − U
=

1

2
(ṙ2 + r2φ̇2)−mgr sinφ

from there we find our generalized forces

10



“Forces”

Fr =
∂L

∂r
= rφ̇2 −mg sinφ

[
kg m

s2

]
force

Fφ =
∂L

∂φ
= −mgr cosφ

[
kg m2

s2

]
torque

and generalized momenta

“Momenta”

pr =
∂L

∂ṙ
= mṙ

[
kg m

s

]
mass x velocity

pφ =
∂L

∂φ̇
= mr2φ̇

[
kg m2

s

]
moment of inertia x angular velocity

finally, the EoM.

Equations of Motion

Fr = ṗr ⇒ rφ̇2 −mg sinφ = mr̈

⇒ r̈ + g sinφ = 0

Fφ = ṗφ ⇒ −mgr cosφ = m
d

dt
⇒ r2φ̈+ 2rṙφ̇+ gr cosφ = 0

We’ll stop here with this example. Clearly, picking coordinates wisely is critical!

Note: you can use T = 1
2
m(ẋ2 + ẏ2 + ż2) and compute ẋ(q, q̇), ...

In our example, this would be

T =
1

2
m
(
ẋ2 + ẏ2

)
=

1

2
m

((
d

dt
(r cosφ)

)2

+

(
d

dt
(r sinφ)

)2
)
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Here is the proof:

T =
1

2
m(ẋ2 + ẏ2 + ż2)

x = x(q)⇒ ẋ =
∑ ∂x

∂qi
q̇i

⇒ ẋ2 =

(∑
j

∂x

∂qj
q̇j

)
×

(∑
k

∂x

∂qk
q̇k

)

=
∑
jk

∂x

∂qj

∂x

∂qk
q̇j q̇k

now sum over x, y, z to get all terms with q̇j q̇k

⇒ T =
1

2
m
∑
jk

ajkq̇j q̇k

ajk =
∑
i∈x,y,z

∂ri
∂qj

∂ri
∂qk

When do we get terms with ajk 6= 0 for j 6= k? (“off-diagonal” terms)

non-orthogonal basis!

q1 = x, q2 = x+ y

⇒ a12 =
∂x

∂q1

∂x

∂q2
+
∂y

∂q1

∂y

∂q2
= 1 + 0 = 1
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