Lecture (3)

1 Principle of Least Action (PLA)

S is the action, and L is the Lagrangian. In the most general case L need not
be T' — U. But in most interesting cases, L =T — U.
Let’s look at some simple examples.
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The PLA is not like Newtonian thinking. You assume that you KNOW THE
END POINTS, and ask what happened in between. With ¥' = ma, you assume
you know the initial position AND VELOCITY, and then move forward in time.

For the PLA any trial path is valid. The one with minimal S is the true path.
For this example, I'll consider parabolic paths.

Constant Velocity Path
t1=0,q(t1) = =0

q(t) = at + bt* | q(ts) = g2 = aty + bt3
ia:@—btgz’l&—btg
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where vy = el
to

This leaves us b as a free parameter which we can adjust to find the path with
minimum action.



So, free particles move at constant velocity. Newton’s 1st Law! Inertia!
(not really a surprise, I guess...)
Let’s try again, but this time with a simple potential.

So we found the parabolic path with minimum action to be the one you would
expect from 8.01.

The initial velocity is just what a projectile needs to fly a distance g2 in time to
with acceleration g.

= Projectile motion results from PLA!

Of course the PLA does’t say anything about parabolic paths. Any trial path
will do! How do you know the true path?



The trick is to assume you know the path and then show you are correct by
trying to adjust it. (This comes from from the Calculus of Variations, see Marion
& Thornton chapter 5 for more info.)

PLA says S’ ~ S for small 7 (first order)

We are looking for a true path with S — S = 0 for any small deviation 7(t).
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And thus we see that the true path must be a solution to the E-L equation! (It is not
an accident that this is also the generalization that worked in yesterday’s lecture.)

The PLA gives us N second order ODEs for a system with N DOFs. To find the
path of our system through our generalized coordinate space, we should provide
2N initial conditions, and solve N 2nd order ODEs. (Mostly, we will keep to N €
{12.3}).

A note about notation: Generally I will write g without the subscript 7 (as noted
yesterday). You can think of this as the 1D case. If you want the ND case, just add
¢ to all of the ¢’s and ¢’s. If the expression does not have ¢ as a free index, sum over
it. For example, the Euler Lagrange Equation
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(Similar to Einstein summation notation). The same is true for multiple particles:

T:%quiT:%;mn;q’i

I will try to avoid the index jungle as much as possible by sticking to 1 particle
in 1D when writing equations.
NB:



2 Generalized Forces and Momenta

Briefly, here is how we get F' = ma from E-L

So, while F' = ma gets tricky when these conditions are not met, E-L just works;
the PLA just got us a very general form of Newton’s second law. As such, we will
need to give names to the generalizations are of force and momentum that we are
used to. They are:

Note that the units associated with these generalized forces and momenta may not
be what you expect.



However, since the units of ¢; could be anything (e.q. unitless for angles in spheri-
cal coordinates) the units of F; and p; may be unusual.

3 Math Review

Before we go on to more physics, let’s review our mathematical tools.




We will have ¢ and ¢ as the only implicit functions of time (i.e. we don’t know
q and ¢ until we solve the equations of motion). We will also generally only have

total TIME derivatives. All other are “easy” partial derivatives like a% or a%‘

NB: § = $q(t) = Fa(t)

4 Lagrangian Workflow

The general workflow for solving problems with Lagrangian Mechanics is:

Lagrangian Workflow:
1. pick generalized coordinates
2. determine L(q, g, 1)
3. compute F; and p; to find EoM

Finding L(q, ¢,t) requires T'(q, ¢) and U(q, t)
Usually U(q, t) is given. What about 7'(q, 4)?

The Lagrangian formalism is very powerful in that we can pick any coordinate
we like, but there is a price to pay: the kinetic energy is complicated.

Kinetic Energy

1
T = §m Z a;1q;qx, for each particle

ik
Or; Or;
where a;;, = Zagla—;i, 7= {z,y,z}.
— 0g;
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Note that we rely on Cartesian coordinates 7 to find the a;, coefficients (see also
Marion & Thornton chapter 6.8, but beware of notational differences).
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In Cartesian coordinates this is nothing special, but in others it is tricky. See
LL 4.4-4.6.

Let’s work through an example to show how all of this machinery works. I will
just do 2D projectile motion (e.g. mgh potential), but I will make the unforgivable
mistake of using polar coordinates. This will demonstrate the full process in detail,
and the value of picking the right coordinates!
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now we have kinetic energy in 2D polar coordinates

from there we find our generalized forces



and generalized momenta

velocity

finally, the EoM.

We’ll stop here with this example. Clearly, picking coordinates wisely is critical!

In our example, this would be

¢>)2
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When do we get terms with a, # 0 for j # k? (“off-diagonal” terms)

non-orthogonal basis!
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