
Lecture (4) 

Last time: Mechanics of Lagrangian Mechanics 
Today: Symmetries and Galilean Relativity 

for tomorrow 

1. read LL 6-8 

2. finish pset 1 by class time! 

1 Nature of Lagrangian and PLA 

Let’s take a step back and note some interesting features of Lagrangian mechanics. 

L is a scalar function (not a vector like F~ ) 
L0 = αL or L00 = L+α give the same EoM for any constant 
α (PLA) 

The fact that scaling and offsetting L have no effect is clear from the PLA: the true 
path is unchanged. Note also that L is additive: 

Lab = La + Lb = (Ta + Tb) − (Ua + Ub) 
for independent particles a and b 

for interacting particles, we use a potential which depends on both particles 

Interacting Particles 

Lab = Ta(qa, q̇a) + Tb(qb, q̇b) − Uab(qa, qb) 

more on interactions later. 
In addition to constants, we can add any total time derivative to L without 

changing the resulting physics (EoMs). See LL eq 2.8. 
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d 
L0 = L + f(q, t)

dtZ t2 d 
S 0 = L + f(q, t)dt = S + f(q, t)|t2 = S + αt1dtt1 

Since all trial paths pass through the same endpoints at t1 and t2, f(q, t)|t2 is a t1 

constant. 
For the curious, I will say that this f(t) is the same as the “generator func-

tions” which will appear briefly at the end of this class (eqn 45.7), but its deep 
implications are revealed only in 8.09. 

For now, let’s look at some examples. 
⇒ Ask class for examples! ⇐ 

d 
g(q, q, t˙ ) = f(q, t)

dt Z 
g(q, ˙ = h(t)dt for any h(t)q, t) h(t) ⇒ f(t) = 

or α → f(t) = αt for any constant α 
∂f(q)

or h(q)q̇ → exists f such that h(q) = 
∂q 

d ∂f(q) ∂f(q)→ f(q) = + q̇ = h(q)q̇
dt ∂t ∂q 

You can also use this to simplify life: 

g(q, q̇, t) = a(q, t) 
d 
dt 
b(q, t) 

= 
d 
dt
(a b) | {z }

drop 

−b d 
dt 
a 

This type of trick is used in the text with little warning or explanation! 
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2 Symmetries of Space and Time 

In order to give concrete examples, I have already given you some idea of the 
fundamental form of the Lagrangian. 

1L = T − U = mv2 − U(q)2 
for a free particle U(q) = 0 

Now I will prove that L must be like this using only the PLA and symmetry. I will 
use Cartesian coordinates for all of this (though I will still write q) because other 
coordinates are more complicated and not more enlightening. We start with the 
simplest of assumptions... 

Free particle, all points in space are equal 
(space is homogeneous) 

˙⇒ L(~q, ~q, t) → L(~̇q, t) 

can’t depend on WHERE 

all points in time are equal (time is homogeneous) 

⇒ L(~̇q, t) → L(~q̇) 

can’t depend on WHEN 

Euler-Lagrange � � 
d ∂L ∂L ∂L(q̇) 

= = = 0 
dt ∂q̇ ∂q ∂q 

∂L(q̇)⇒ = const ⇒ L = αq, ˙ or q̇ = const 
∂q̇ 

all directions are equal (space is isotropic) � � � � � � � � 
⇒ L ~q̇ → L |~q̇ | → L ~q̇ · ~q̇ = L v 2 X 

2 2 2 v = q̇i = ẋ2 + ẏ 2 + ż 
i 
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So L cannot be proportional to ~q̇, or else direction would matter. Simply put 

if L(q̇) = αq̇ then L( ˙ 6q) = L(−q̇) = −αq̇ 
2if L(q̇) = αq̇ then L(q̇) = L(−q̇) 

Thus we know that the Lagrangian of a free particle can only depend on the mag-
nitude of its velocity, and we know that the result will be motion with constant 
velocity (vectorially). 

Newton’s 1st Law, but with nothing more than PLA in ho-
mogeneous and isotropic space and time. 

Let’s try a simple example to see how this works. 

� L� = a + bv + cv 2 + dv3 + ... where v = q̇ 
d 
dt 

∂L 
∂v 

= 
d 
dt
(b + 2cv + 3dv2 + ...) = 0 

0 = 2c ̇v + 3d(2v ̇v) + ... = (2c + 6dv + ...) ̇v 

So the 1st and 2nd terms don’t survive the differentiation, and if c 6 0, we must = 
have v̇ = 0 ⇒ v = const. More terms don’t change this, and actually all odd order 
terms are inconsistent with isotropic space (L(q̇) = L(−q̇)). 

NB: we picked Cartesian coords because the unit vectors are the same every-
where and interchangeable under rotation (e.g. homogeneous and isotropic). P 

For a free particle in Cart’ coords, we can only have L = q̇2n 
n=1 αn

3 Galilean Relativity 

What can we say using Galilean Relativity? 
We’ll start with 2 train cars, moving at some relative velocity ~�. 
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Galilean Box Cars 

U(~r, ~ṙ) = potential which defines the experiment in each car 
0 ˙ 0) ˙U(~r , ~r = U(~r, ~r) same in local coordinates 

0 0 ~r = ~r + ~� t , ~ṙ = ~ṙ + ~� relative motion 

the Lagrangians for each car are 

˙ ˙L = L(~r, ~r) = LFP − U(~r, ~r) 

L0 = L0(~ 0 ˙ 0) 0 ˙ 0)r , ~r = LFP − U(~r , ~r 

where LFP = LFP (v 2) Lagrangian of free particle 
2and v = |~ṙ |2 

Galilean Relativity tells us that the physics in the two cars is the same. This means 
that the Equations of Motion must be the same. We also know that the PLA tells 
us that 2 Lagrangians give the same physics if 

L0 = L +
d 
f(q, t) ⇒ same physics 

dt 

so... 
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� � 
L − L0 02) − ˙ 0 ˙ 0)= LFP (v 2) − LFP (v U(~r, ~r) − U(~r , ~r 

02)= LFP (v 2) − LFP (v 

Earlier we expanded LFP (v) in powers of v and found that LFP could only 
contain even powers v, leaving us with LFP as some function of v2. Since Galilean 
Relativity holds for small velocities as well as large ones, we can assume that � is 
small and expand LFP (v

2) around � = 0. 

Expand LFP (v
02) around � = 0 

02)LFP (v = LFP (v 2 + 2 ~ṙ · ~� + �2)� �∂LFP ' LFP (v 2) + 2 ~ṙ · ~� + �2 

∂(v2)� �∂LFP ⇒ L0 − L ' 2 ~ṙ · ~� + �2 

∂(v2) 

� �� � d � �∂LFP ∂LFP 
2~ṙ · ~� + �2 = 2~r · ~� + �2t − 

∂(v2) dt ∂(v2)� � 
d � �∂LFP 

2~r · ~� + �2t 
dt ∂(v2) 

In order for us to be sure that the two Lagrangians to give the same Equations of 
Motion, we need the second term to be zero for all ~r and any small �. That would 
make L0 − L equal to the total time derivative of some function f(q, t). 

Same Physics 
d ∂LFP ∂LFP 

= 0 ⇒ = constant ⇒ LFP = Kv2 

dt ∂(v2) ∂v2 

Thus, L = Kv2 without higher powers of v2 is consistent with Galilean Relativity. 
1We choose K ∝ m to maintain the additive nature of L, and K = m to make 2 

F = ma pretty. 
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4 Newton’s Laws 

Let’s finish deriving Newton’s Laws from the PLA and basic symmetries. I have 
already shown that we can get F = ma from E-L, but previously I always assumed 
that L = T − U . Now we know that in Cartesian coordinates, with homogeneous 
space and time, isotropic space, and requiring Galilean Relativity, 

1 
L = mv 2 − U = T − U 

2 
∂L d ∂L 

= ⇒ F = ma 
∂q dt ∂q̇ 

So we have now arrived at F = ma from PLA and broad assumptions about space 
and time! We are also in a position to consider interacting particles 

Interacting Particles 
1 12 2L = mav + mbv − U(~ra − ~rb)a b2 2 

∂L d ∂L ∂U d
for xa : − = − − (mẋa)

∂xa dt ∂ẋa ∂xa dt
= Fxa − mẍa = 0 

Extending this to all coordinates we find Newton’s 3rd Law: 

¨ ¨ −raU = ma ~ra and −rbU = mb ~rb 
¨ ~ ¨ U(~ra − ~rb) ⇒ ma ~ra = Fab = −mbr~b 

“For every action, there is an equal and opposite reaction.” 

Questions on this? 
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5 Math Aside 

Again, before we move on to more physics, let’s look for a moment at these tricky 
derivatives. 

On the pset you were asked to show that 
∂ d d ∂ 

f(q, q̇, t) 6= f(q, q̇, t)
∂q̇ dt dt ∂q̇ 

even though 
∂ d 

f(q, q̇, t) = 
d ∂ 

f(q, q̇, t)
∂q dt dt ∂q 

Let’s explore this a little bit... 
∂ 
∂q̇

d 
dt 
f = 

∂ 
∂q̇

� 
∂ 
∂t 

f + q̇ 
∂ 
∂q 

f + q̈ 
∂ 
∂q̇

f 

� 

= 
∂ 
∂t 

∂ 
∂q̇

f + 
∂ 
∂q 

f + q̇ 
∂ 
∂q 

∂ 
∂q̇

f + 

� 
∂ 
∂q̇

q̈ 

� 
∂ 
∂q̇

f + q̈ 
∂ 
∂q̇

∂ 
f 

∂q̇ 

∂ d ∂ d 
q̇ looks like g(x)

∂q̇ dt ∂x dt
d ∂ d 

= q̇ = 1 = 0 
dt ∂q̇ dt 

All but one of the remaining terms can be grouped to make d ∂ f such that dt ∂q̇ 

∂ d d ∂ ∂ 
f = f + f 

∂q̇ dt dt ∂q̇ ∂q 
∂ d ⇒ and do not commute 
∂q̇ dt 

∂ ∂ (∂q̇ )−1NB: = ∂q̇ ∂t ∂t 
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6 Example 

Let’s apply all that we have learned to a moderately complicated problem (5.3 in 
LL) to find the EoMs. Here we have a mass on a string attached to a rotating wheel. 
The wheel rotates at a fixed angular velocity ω, and gravity acts on the mass m. 

x = a cos(ωt) + l sin φ 

y = −a sin(ωt) + l cos φ 

find L = T − U 

U = −mgy and T =
1 
m(ẋ 2 + ẏ 2)

2 
ẋ = −aω sin(ωt) + l cos φφ̇

ẏ = −aω cos(ωt) − l sin φφ̇

⇒ T =
1 
m(a 2ω2 sin2(ωt) − 2aωl sin(ωt) cos φ φ̇+ l2 cos 2 φ φ̇2 

2 
2ω2 φ2+ a cos 2(ωt)+ 2aωl cos(ωt) sin φ φ̇+ l2 sin2 φ ˙| {z } | {z } | {z }
a2ω2→ drop! 2aωl sin(φ−ωt)φ̇ l2φ̇2 
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Note: 
d 
dt
(cos(φ − ωt)) = sin(φ − ωt)(ω − φ̇) 

⇒ sin(φ − ωt) φ̇ = ω sin(φ − ωt) − 
d 
dt
(...) | {z }

drop! 

⇒ T = 
1 
2 
m(2alω2 sin(φ − ωt) + l2 φ̇2) 

U = −mgy = mg(a sin(ωt)| {z }
f(t)→drop! 

−l cos φ) 

This finally brings us to the Lagrangian given in LL problem 5.3a (they give no 
explanation!) 

L = ml(aω2 sin(φ − ωt) + 
1 
lφ̇2 + g cos φ) [note units]

2 

⇒ Fφ = 
∂L 

= ml(aω2 cos(φ − ωt) − g sin φ) [torque]
∂φ 

pφ = 
∂L 

= ml2φ̇ [Iω ⇒ angular momentum] 
∂φ̇

¨ Fφ = ṗφ ⇒ φ = 
a
ω2 cos(φ − ωt) − 

g 
sin φ 

l l 

Where in the last step I have made the E-L equation look like Newton’s 2nd Law. 

for tomorrow 

1. read LL 6-8 

2. finish pset 1 by class time! 

10 



MIT OpenCourseWare 
https://ocw.mit.edu 

8.223 Classical Mechanics II 
January IAP 2017 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Nature of Lagrangian and PLA
	Symmetries of Space and Time
	Galilean Relativity
	Newton's Laws
	Math Aside
	Example



