
Lecture (5) 

Today: Conserved Quantities and Center of Mass 

For Next Lecture 

1. read LL 9-11 

2. do problems 11-14 

1 Conservation of Energy 

In 8.01 you encountered conservation of energy as an integral along the path of a 
particle, which gave the work done on it. 

8.01 Energy Conservation Z 2 Z t2 d d~r ~W12 = F · d~r = (m ~v) · dt 
dt dt1Z t1 Zt2 d~v 1 t2 d 

= m · ~v dt = m (~v · ~v) dt 
dt 2 dtt1 t1 

1 
= 

2 
m(v 22 − v 21) = ΔT 
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So the work performed lead to a change in kinetic energy. For a conservative force, 
we can also relate this to the change in potential energy... Z 2 Z 2 

~W12 = F · d~r = (−rU) · d~r = U1 − U2 = −ΔU 
1 1 

⇒ ΔT = −ΔU ⇒ Δ(T + U) = 0 

E = T + U is conserved! 

In the context of Lagrangian Mechanics and the PLA, on the other hand, no 
vector calculus is required. We need only assume that time is homogeneous, that is 
that L has no explicit time dependence. 

Lagrangian Energy Conservation 
∂L 

given 
∂t 

= 0 i.e. time is homogeneous 

d 
dt 
L(q, q̇) = 

∂L 
∂q 

q̇ + 
∂L 
∂q̇ 

q̈ ← total time derivative 

⇒ 
dL 
dt 

= q̇ 
d 
dt
( 
∂L 
∂q̇ 
) + ( 

d 
dt
q̇) 
∂L 
∂q̇ 

← used E-L 

= 
d 
dt
( ̇q 
∂L 
∂q̇ 
) � 
← used product rule � 

d dL ⇒ 0 = 
dt 

q̇ 
d ̇q 
− L 

⇒ E ≡ q̇ 
∂L 
∂q̇ 
− L = constant in time 

hmm... did we really do anything there? Profoundly simple or totally vacuous? 
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Note: 

T = 
1 
2 
m 

X 
ajkq̇j q̇k and L = T (q, q̇) − U(q) 

jk 

∂L 1 X 
q̇i 
∂q̇i 

= 
2 
mq̇i 

jk 

ajk(δij q̇k + δikq̇i) 

1 X 
= 

2 
m ajk( q̇j q̇k + q̇kq̇j) = 2T 

jk 

⇒ E = 2T − (T − U) = T + U 

given homogeneous time and a conservative potential 

So, conservation of energy is built into the E-L equations. As long as there are 
no time varying forces (e.g. external drivers) or velocity dependent forces (e.g. 
friction) energy is conserved! (Actually velocity dependent potentials are ok, E is 
still conserved, but E = T + U is not guaranteed! More on velocity dependent 
potentials later in the course.) 

2 Conservation of Momentum 

Conservation of momentum, in 8.01, was found by integrating in time (rather than 
space as we did for energy). With a single particle and no external forces, this is 
very simple. 

Conservation of Momentum Z Zt2 t2 

~F dt = ṗ dt = Δp = 0 if F = 0 (in 8.01) 
t1 t1 

Single Particle Conservation of Momentum: 
d ∂L ∂L ∂L ∂L 
( ) = ⇒ = const if = 0 (in 8.223) 

dt ∂q̇ ∂q ∂q̇ ∂q 

we have already seen that we need only assume that space is homogeneous and 
isotropic to show that a free particle moves at constant velocity in Lagrangian Me-
chanics. What about a system of particles? 
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X 
~no external forces ⇒ Fn = 0 

n X X ∂U ⇒ rnU(~r1, ..., ~rN ) = 0 ⇒ = 0 
∂~rn n n 

∂U ∂U ∂U 
Note: rnU(r~1, ..., r~N ) = xb+ yb+ zb

∂xn ∂yn ∂zn 

That is 8.01 style. Let’s do this 8.223 style by requiring homogeneous and isotropic 
space. (Homogeneity of a scalar field ⇒ constant ⇒ isotropic). If space is homo-
geneous, a small shift of all particle coordinates should not change the Lagrangian. 

L0 

~rn 
0 = ~rn + ~� 

= L(~r 0 , ~̇r 0, t) = 

where � is a small constant offset 

L(~r, ~̇r, t) + 
X 

n 

� 
∂L 
∂~rn 

· ~� + 
∂L 

∂ ̇~rn 

· ~̇� 
� 

⇒ L0 − L = 
X ∂L · ~� = ~� · 

X ∂L 
∂~rn ∂~rn n n 

L0 − L = 0 ⇒ 
X ∂L 

= 0 
∂~rn n 

That is, the sum of generalized forces over all particles is zero. 
What about the total momentum of the particles? Summing E-L over particles: � �X X Xd ∂L ∂L d ∂L 

= = 0 ⇒ = 0 
dt ∂~ṙn ∂~ṙn dt ∂~ṙnn n n X X∂L ~⇒ P ≡ = p~n = constant 

∂~ṙnn n 

So the total generalized momentum is conserved in an isolated system (no external 
forces, homogeneous space). 
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Note: unlike E, P does not depend on the interaction potential. It is just the 
sum of each particle’s p~n. 

3 Conservation of Angular Momentum 

We have seen that time invariance of the L leads to Energy Conservation, and 
translation invariance of L leads to Momentum Conservation. What about angular 
momentum? 

Angular Momentum and Rotational Invariance of L 
0 x = x cos φ − y sin φ 

y 0 = y cos φ + x sin φ 

for φ � 1, sin φ ≈ φ, cos φ ≈ 1 

x 0 ≈ x − yφ , y0 = y + xφ �0 z = z ⇒ ~� = − yφ, xφ, 0 
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L0 = L(~r 0 , ~̇r 0) = L(~r + ~�, ~̇r + ~̇�) 

= L(~r, ~̇r) − 
∂L 
∂x 

yφ + 
∂L 
∂y 

xφ − 
∂L 
∂ ẋ 

ẏφ + 
∂L 
∂ ẏ 

ẋ

Rotational Invariance ⇒ L0 − L = 0 

⇒ 0 = φ( ṗyx + py ẋ − ( ṗxy + px ẏ)) 

0 = φ 
d 
dt
(pyx − pxy) for any small φ 

⇒ pyx − pxy = constant ⇒ Lz = constant 

NB: ~L = ~r × ~p ⇒ Lz = x py − y px 

Invariance to rotation about z-axis leads to conservation of z-component of angular 
momentum! 

Of course there is nothing special about zb; invariance to rotation about any axis 
implies conservation of angular momentum about that axis. If L is invariant to all 

~rotations about a point (e.g. the origin), then L is conserved. 

~if U(|~r|) “central potential”, then L about origin is con-
served 

~ ~Note that like E and P , L is additive and frame dependent. 

~LL uses M for AM, presumably to avoid confusion with Lagrangian. We 
will use L~ as is customary. 
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4 Center of Mass 

While both E and p are deeply meaningful quantities in physics, they both depend 
on your choice of reference frame. There is, however, a “special” frame for any 
given system: the Center of Mass frame which has p = 0 and minimal Energy. 

Center of Mass Frame 
PCM = 0 , ECM = Einternal = minimum energy 

To investigate this, let’s take 2 frames with relative velocity Δv 

0 v = vn +Δv velocity of the nth particlen X X 
P 0 = mn(vn +Δv) = P +Δv mn 

n nX 
P 0 = P + MΔv where M = mn 

n 

Note that LL uses µ for total mass and m for reduced mass. It is much more 
common to use M for total mass and µ for reduced mass. The velocity of the CM 
frame is 

~P 
~vCM = velocity of CoM 

MP 
mn ~rn~ nRCM = position of CoM 
M 

The potential energy of a system of interacting particles is unaltered by a change 
in reference frame (since only relative positions of the particles matter), but the 
kinetic energy changes with velocity. X X 

2if T =
1 

mnvn ⇒ T 0 =
1 

mn(v~n +Δ~v)
2 

2 2 
n n X 

2T 0 =
1 

mn(v + 2 v~n · Δ~v +Δv 2)n2 
1 ~= T + MΔv 2 +Δ~v · P 
2 
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If the initial frame was the CoM frame with P~ = 0, then 

if P~ = 0, (i.e. start in the CoM frame) then 
1 2T 0 = T + MΔv 
2 

Such that the CoM frame is the one with minimum energy. 

For a wide array of physics problems, the first step to a solution is a move to 
the CoM frame. 

5 Frame Dependence of L~

L~ = ~ ~ ~ ~Li + Rcm × P , where Li is the AM in the CoM frame 

So like energy total AM may be non-zero in the CoM frame. Unlike energy, 
~there exists a frame with L = 0, though I don’t know how it is used or called... 
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Let’s back up a moment and look at the big picture. For any isolated system of 
~interacting particles we have 7 conserved quantities (E + P + L~ ). By “isolated” 

I mean the Lagrangian doesn’t depend on location, orientation or time. This is 
trivially true if the potential depends only on the relative positions of the particles 
(e.q. due to gravity or electric charge). 

6 Homogeneous and Isotropic 

Homogeneous and isotropic space 

U(r~1, ~r2) = α|r~1 − r~2|2 

Homogeneous, but NOT isotropic (vector field only) 
~F (r~1, ~r2) = α xb uniform force in xb direction 

Isotropic about origin (NOT homogeneous) 
U(r~1, ~r2) = αr1

2 + βr2 central force, origin is special 2 

For Next Lecture 

1. read LL 9-11 

2. do problems 11-14 
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