
Lecture 8: Kepler’s laws 

In the early 1600s, 70 years before F = ma, Kepler published 3 rules followed 
by the planets in their orbits around the sun – Kepler’s laws. 

Kepler’s laws: 
1. Orbits are elliptical with the Sun at one focus
2. The line from the planet to the Sun sweeps out equal area in equal

time
3. The square of the period of the orbit is proportional to the cube

of the semimajor axis of the orbit.

Today we will see how each of these comes about, in light of Lagrangian 
mechanics and yesterday’s lecture on central potentials. 

Kepler’s second law doesn’t actually depend on the potential being 1 
r , so let’s 

start there.... 

r
A

Kepler’s second law says that dA is constant, and
dt � �dA 1 1 Lzˆ 2 ˙= r ~v · φ = r φ = = constant. 

dt 2 2 2µ 

~Conservation of L (angular momentum) implies 
Kepler’s second law. 

Now let’s look at the effective potential for orbits under gravity. Note that the 
reduced mass µ is very close to the mass of the planet. 
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Last time: 1D potentials, reduced mass, central potentials

This time: Kepler and the
1

r
central potential



����

mpms mpms
Reduced mass: µ = ≈ = mp for ms � mp

mp + ms ms 

Gravity: 

Gmpms −α −α L2
z −α λ 

U(r) = − = =⇒ Ueff = + = + 
r r r 2µr2 r 2r2 

note: mpms = µM , α = GµM , λ = L2 
z/µ 

~As before, we pick ẑ  orthogonal to the plane of the orbit and parallel to L, to 
keep things easy. 

E > 0 unbound (hyperbola) 

E = 0 unbound (parabola) 

E0 < E < 0 bound (ellipse) 

E = E0 bound (circle) 

For an orbit with a given angular momentum, we can find the minimum total 
energy E0, which produces a circular orbit since r̈ = ṙ = 0. 

For the general case with E ≥ E0, we can find the EoM using conservation of 
energy: 
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−µ
2

(
GMµ

Lz

2r0
2)2

.

(The 1
2

Ū− 1 term checks out with the virial theorem: 2T̄ = − .)



� � 
1 λ α 2 α λ 

E = µṙ2 + 
2 
− =⇒ ṙ2 = E + − 

22 2r r µ r 2r s � � 
2 α λ dr 

=⇒ ṙ = E + − = . 
µ r 2r2 dt 

Although this is first order, it’s hard to solve for r(t). But, not to worry, 
Landau has a trick.... 

dφ Lz Lz2 ˙Lz = µr φ =⇒ = =⇒ dφ = dt 
dt µr2 µr2 

ZZ t rLz Lz dr 
=⇒ φ = φ0 + dt = φ0 + q � . 2 2 � µr µr 2 α λ0 0 E + − 

µ r 2r2 

Not pretty, but there is no more t, and we can do this integral to find φ(r), 
which describes the shape of the orbit. � � 

Lz µα 1 
cos (φ − φ0) = − q

r Lz µ2α2 
2µE + 

L2 s z � � 
L2 
z α µα2 1 

= − q
2µα2 r L2 µα2 

z E + 
2L2 � � 

z 

1 α 1 
= √ + 2E0 √ 

2 −E0 r E − E0� � 
α 1 E 

cos (φ − φ0) = 1 + p with < 1 
2E0r 1 − E/E0 E0 

...all of which is about 1 line in LL! 

We arrive at a description of the orbit, with 
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r 
r0 E α λ 

e cos (φ − φ0) = 1 − with e = 1 − , r0 = − = 
r E0 2E0 α 

r0 r0−1 ≤ cos (φ − φ0) ≤ 1 =⇒ rmax = and rmin = . 
1 − e 1 + e 

r0 
= 1 + e cos φ (with φ0 = π such that φ0 =⇒ r = rmin) 

r 

Ellipse! 

r0 −α 
a = = 

1 − e2 2E 
r0 Lz

b = √ = √ 
1 − e2 −2µE 

Looking back to Ueff: 

Note: E = E0 =⇒ e = 0 
and rmin = rmax = r0 

We have shown Kepler’s first law, but we have dodged the third by removing 
time from our solution! 

We can, however, use Kepler’s first law and angular momentum to show 
that 
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Z τ Z τLz dA Lz dA 
= =⇒ dt = dt with τ = period 

2µ dt 0 2µ 0 dt 

Lz 
=⇒ · τ = A = πab (area of ellipse)

2µ r r 
Lz µ 2µ

(using b = √ from above) =⇒ τ = 2πa3/2 = πa 
−2µE α −E 

2
0 

So the period of the orbit depends only on the planet’s mass and total en-
ergy. We could have shown Kepler’s third law in a totally different manner: 
mechanical similarity! 

= α1−k/2 krecall: a = αa0, τ = βτ0, β for U(r) = cr .� �3/2 
ττ = a =⇒ τ 2 3k = −1 (our potential) =⇒ = a .3
0τ0 a0 a 

Since the third law only claims “proportional to,” values for τ0 and a0 can 
come from any normal orbit. 

What about unbound “orbits” (trajectories)? 

Unbound “orbits” or trajectories r 
E 

E ≥ 0 =⇒ e = 1 − ≥ 1 (recall E0 < 0)
E0 

L2r0 z rmin = , rmax = ∞, r0 = 
1 + e µα 

α 
With U = − , recall... 

r 

E < 0 =⇒ elliptical orbits 

E = 0 =⇒ parabolic orbits 

E > 0 =⇒ hyperbolic orbits 

Let’s see if this works out given our path equation: 
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E = 0 =⇒ e = 1 =⇒ parabolic orbit? We have � � r0 x 
= 1 + cos φ =⇒ r 1 + = r0 =⇒ r = r0 − x 

r r 
r2 − y2 

2 2 2 2 2 0 =⇒ x + y = r = r0 − 2r0x + x =⇒ x = 
2r0 

1 
rmin at y = 0 =⇒ rmin = r0

2 

Maximum value of φ? 

φ∞ = φ as r →∞ 
=⇒ 0 = 1 + cos φ∞ =⇒ φ∞ = ±π 

(Note that, for hyperbolic orbits, the range of the angle φ is restricted by � � 
φ∞ = arccos −1 

e , e.g. ±
2
3 
π for e = 2.) 

So if parabolic orbits have E = 0, why don’t they hit the origin? What makes 
one different from another? 

� �L2 

r0 = z , Lz = ~r × p~ = r mrφ̇ = mrv⊥
µα 

Lz
for given Lz we have v⊥ = → 0 as r →∞ 

mr 

(Infinity is a tricky place!) 

Finally, as a lead-in to next lecture, let’s look at repulsive potentials with 
U = α

r . The math is very similar, so I’ll just present the solution . . . 
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α α λ 
for U = =⇒ Ueff = + 

2r r 2r 

L2 

α = GMµ, λ = z 

µ 

U > 0 =⇒ E > 0 =⇒ 
unbound hyperbolic 

r0 
= e cos φ − 1 trajectories 

r r 
λ λ 

with r0 = , we have e = 1 + 2E · > 1 since E > 0 
α α2 

r0 r0 
r = , =rmin 

e cos φ − 1 e − 1� � 
1 

φ∞ = arccos 
e 
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Laplace-Runge-Lenz Vector 

As previously discussed, a particle in 3D can have at most 5 conserved quan-
tities (2 · 3 − 1). A 1 

r potential has the maximum number (related to the fact 
~that it has closed orbits). We know that E and L are conserved, but that is 

only 4 quantities; one is missing. 

Q: Can you think of a feature of the orbits in this potential which is constant, 
~but not determined by E or L? s 

L2 

Example: e? No! e = 1 + 2E z . 
µα2 

A: The phase of perihelion (or “direction,” but we know if it lies in a plane ⊥ 
~ to L). 

~̇r × L~ 
~e = − r̂. “ellipticity vector” or “Laplace-Runge-Lenz vector”

α 

| ~e | = e, ~e × L~ = 0, points along semi-major axis towards rmin

α 
for U(r) = − 

r 

The symmetry behind this is hidden, and will not be exposed in 8.223 (8.09!?) 
but you can think of it as the freedom to choose the orientation of the orbit, 

~without changing E or L. 

For tomorrow: (1) decode LL 18-19, (2) Do problems 21-22 (i.e. finish pset 2) 
and LL problem 19.2 
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