1 Part 1: Analysis

Here are several parameters you will need (see figure 2):

- m_1 mass of counter-weight
- m_2 mass of projectile
- m_b mass of beam
- I_b moment of inertia of beam **about its center of mass**
- l_1 distance from pivot to counter-weight
- l_2 distance from pivot to sling attachment
- l_s length of sling
- ϕ_{b0} starting beam angle (~ $3\pi/4$)
- ϕ_{s0} starting sling angle (~ $\pi/2$)

To keep things simple, assume that the sling is massless and that it is always under tension so that its length is constant. Also, to avoid unnecessary complexity, treat the counter-weight and the projectile as point masses, and assume that both masses are released from rest at t = 0.

Figure 2: Simple trebuchet parameter description.

- 1. We'll start by treating the trebuchet as a black box and think only about the energy involved.
 - (a) Calculate the maximum range, given that all of the potential energy of the counter-weight, $U_0 \approx m_1 gh$, is transferred to kinetic energy of the projectile. That is, compute d_{max} as a function of m_1, m_2, g , and h. For this calculation, treat the machine as a black-box, and consider only energy

conservation. (Ignore the potential energy of the projectile, air resistance and the launch height of the projectile.)

- (b) Given that all of the available potential energy of the counter-weight is transferred to the projectile, what are ϕ_b and $\dot{\phi}_b$ at the moment the projectile is released?
- (c) To do the maximum range calculation more correctly, you should include the mass of the beam in the potential energy calculation (i.e., if the beam is long and heavy, with $l_2 \gg l_1$, it will require a lot of energy just to lift the CoM of the beam). Furthermore, the distance the counter-weight falls before reaching the bottom of the swing at $\phi_b = 0$,

$$h = y_1(t = 0) + l_1 = l_1(1 - \cos \phi_{b0})$$

depends on its starting angle $\phi_b(t=0) = \phi_{b0}$. Compute the available potential energy U_0 , and from it d_{\max} , given the parameters of the trebuchet in the table in part 1, assuming an initial beam angle ϕ_{b0} (starting from rest). (As before, ignore the potential energy of the projectile, air resistance and the launch height of the projectile.)

- 2. Write the kinetic and potential energy (T and U) for the trebuchet in terms of the Cartesian coordinates of the counter-weight (m_1) and the projectile (or "payload", m_2), and the beam angle (ϕ_b) , along with whatever constants you need (e.g., lengths, masses, gravity, etc.).
- 3. Write the Lagrangian for the trebuchet in terms of only the angular coordinates ϕ_b and ϕ_s and constants (i.e., without individual cartesian coordinates).
- 4. Compute the equations of motion for ϕ_b and ϕ_s and simplify them to the form

$$\ddot{\phi}_b = \alpha_b f(\phi_b - \phi_s, \phi_s, \phi_s) - \omega_b^2 \sin \phi_b \tag{1}$$

$$\ddot{\phi}_s = \alpha_s f(\phi_s - \phi_b, \phi_b, \phi_b) - \omega_s^2 \sin \phi_s \tag{2}$$

to find the 3 argument function f(a, b, c) and the 4 constants $\alpha_{\{b,s\}}$ and $\omega_{\{b,s\}}$.

(These equation of motion are hard to solve analytically, so I'm not asking you to do that here.)

5. Solve the equations of motion for $l_2 = 0$ to find $\phi_b(t)$ and $\phi_s(t)$ for small values of ϕ_b and ϕ_s . (This is not a functional trebuchet, but it is something you can solve.)

MIT OpenCourseWare https://ocw.mit.edu

8.223 Classical Mechanics II January IAP 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.