
PROJECT G. Cosmology

This project replaces Project G. The Friedmann Universe in Exploring Black Holes. This

draft is assembled from various sources specifically for this class. As you read it, please

have at hand (1) EBH, especially the figures on page G-20, and (2) the group of computer-

generated figures posted with this project. In our experience these figures are much cleaner

when printed out than they look on a computer screen.

1 Current Cosmology

We live in a golden age of astrophysics and cosmology. Observational satellites above Earth’s

atmosphere view the electromagnetic spectrum from microwave through gamma rays. These

observations couple with those from ground-based observations in the visible and radio por-

tions of the spectrum to yield a flood of images and data that arouse public interest and

stimulate advances in theory. For the first time in human history data and testable models

inform our view of the Universe most of the way back to its beginning.

Briefly, the current view is that some 13.7 billion years ago the Universe underwent a

rapid expansion from a hot Big Bang which created a variety of particles. Most of these

decayed, leaving stable electrons and protons and free neutrons that began to decay (half-life

11 minutes). During the first three minutes, collisions and cooling allowed some neutrons

to bind to two protons to create stable helium nuclei and a tiny amount of stable lithium

(three protons plus one neutron). About 380,000 years after the Big Bang the temperature

dropped to the point that electrons could bind to nuclei, creating atoms and freeing photons

to stream uninhibited through the Universe. The cosmic microwave background radi-

ation we see in all directions brings us photons from that moment, but vastly redshifted

due to the subsequent expansion of the Universe. The small variations in this background

radiation (a few parts in 100,000) tell us about the spatial curvature of the Universe and

the constituents of the Universe (described in this project). From these fluctuations grew

the galaxies and clusters of galaxies that we now observe.

Gravitational compression into stars ignited nuclear burning which cooked lighter ele-

ments into heavier ones up to the most stable element, iron. Explosions of some dying stars
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spewed these elements into space, in the process creating nuclei heavier than iron. The

initial expansion rate of the Universe slowed down due to the preponderant influence of mat-

ter attracting other matter, both visible matter made of atoms and so-called dark matter

whose presence is inferred form the stable rotation of galaxies and motion within galaxy

clusters. The present Universe appears to be increasing its rate of expansion due to a so-far

mysterious dark energy. If the most popular current cosmological models are correct, this

accelerating expansion could continue indefinitely. This apparently crazy prediction will be

described and justified more fully in this project.

In addition to nailing down more accurate numbers given by current observations, the

goal of future observations is to explore the nature of dark matter which evidently accounts

for about 23 percent of the matter in the Universe and dark energy which makes up about

73 percent. Baryonic matter, made of protons and neutrons in the form of atoms, accounts

for only 4 percent of the contents of the Universe.

2 Robertson-Walker Metric

The simplest models of the Universe assume that the Universe is homogeneous (the same

everywhere) and isotropic (the same as viewed in all directions). As far as we can tell

from our Earth-bound perspective, these assumptions appear to be correct when averages

are taken over large enough regions of the Universe. In the words of Martin Rees, “A box

200 million light-years on a side . . . can accommodate the largest aggregates. Such a box,

wherever it was placed in the universe, would contain roughly the same number of galaxies,

grouped in a statistically similar way, into clusters, filamentary structures, and so on.”

Assuming symmetry, the homogeneity and isotropy of space, uniform spacetime curva-

ture, and the possibility of expansion, what form can the spacetime metric take? In the 1930s

Howard Robertson and Arthur Walker independently found the the metric that satisfies these

conditions, a result that we call the Robertson-Walker metric. In a two-dimensional spa-

tial plane the Robertson-Walker metric has the form:

dτ 2 = dt2 −R2(t)

(

dr2

1−Kr2
+ r2dφ2

)

(1)

Here, R(t) is a unitless scale factor that describes the expansion (or contraction) of the

Universe. The scale factor R(t) is defined to have the value unity at the current age of the

Universe, t0.

R(t0) ≡ 1 t0 is the present time (2)

The constant K in equation (1) is called the curvature parameter. As the name
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implies, K describes the overall curvature of the Universe. (It describes only the spatial

curvature, i.e. curvature with dt = 0. Spacetime can be curved regardless of the value of K.)

Different values of K lead to three qualitatively different descriptions of this geometry. For

K = 0 the Universe is spatially flat, having zero spatial curvature. Current observations

support this value. For a positive value ofK the Universe is closed, having positive curvature

like a sphere. For a negative value of K the Universe is open, having negative curvature like

a saddle. From equation (1) it is apparent that K has the units of inverse length squared.

From it we can form a length |K|−1/2 called the curvature length.

Query 1
Alternative curvatures of the Universe

Write the spacelike form of the Robertson Walker metric (1), that is

with dσ2 = −dτ 2 on the left side. Consider the resulting metric at

the present age of the Universe, so that R(t) = R(t0) = 1. Choose an

arbitrary point as the center (r = 0) of your coordinate system. All of

the following questions concern two events near to one another in space

that occur simultaneously (dt = 0) in the frame described by (1).

A. Show that very close to the origin (r = 0), the proper distance be-

tween these two events is described by Euclidean geometry, no matter

what the value of K.

B. ForK = 0 (zero curvature) and r remote from the origin, is the proper

distance between these two events greater than, equal to, or less than

the distance reckoned using Euclidean geometry? What is the largest

possible value of r?

C. For K > 0 (positive curvature) and r remote from the origin, is

the proper distance between these two events greater than, equal to, or

less than the distance reckoned using Euclidean geometry? What is the

largest possible value of r?

D. For K < 0 (negative curvature) and r remote from the origin, is

the proper distance between these two events greater than, equal to, or

less than the distance reckoned using Euclidean geometry? What is the

largest possible value of r?

The scale factor R(t) helps us to deal with the confusion of lengths that change in an
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expanding Universe. It implies a set of comoving coordinates along with the physical

(expanding) coordinates. Imagine drawing a grid onto a sheet of rubber and trying to

describe the positions of dots marked onto the sheet as you stretch the rubber as it lies over

a fixed flat floor. The physical positions of the dots (for example, their positions relative to a

fixed point on the floor) will change in a complicated way as you pull on the sheet. However,

relative to the grid you drew on the sheet (which is also being stretched) the dots are

stationary and their positions are trivial to describe: constant. The bookkeeper coordinates

on the grid which stretches with the rubber are analogous to comoving coordinates in the

Universe.

The scale factor R(t) tells us how to convert physical length (i.e., measured in light-years)

into comoving length (i.e., measured using bookkeeper coordinates on your rubber grid) at

some time t:

`physical(t) = R(t) `comoving. (3)

The square of this relation is coded on the right side of equation (1) in the parenthesis

with its coefficient R2(t). The quantities dr and rdφ are the comoving bookkeeper distances.

Two stones with constant coordinate separation dr and rdφ will increase their meter-stick-

measured physical separation as the scale factor R(t) increases.

Query 2
Measuring Distance

Start with the spacelike form of the Robertson Walker metric (1) and

assume that the Universe is flat (for which there is current evidence). At

a time equal to half the current age of the Universe (t = t0/2) two stones

have the incremental coordinate separation dr (dφ = 0).

A. What will be the measured separation between the stones at that time

(t = t0/2)?

B. Assume that the stones maintain the same bookkeeper coordinate

separation until the present age of the Universe (t = t0). What will be

the measured separation between the stones now?

C. How can a very long-lived observer (or observing machine) verify that

the coordinate separation dr remains constant from t = t0/2 to t = t0?

The time t in equation (1) is the local time measured on clocks that ride on dust particles

assumed to be locally at rest (with unchanging bookkeeper coordinates) as the scale factor
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changes. As usual, the proper time increment dτ is the time on the wristwatch of a particle

moving from one event to another nearby event separated by the coordinates dr, dφ, dt.

3 Friedmann-Robertson-Walker (FRW) Model of the

Universe

The Robertson-Walker metric (1) does not provide a cosmological model, because it says

nothing about how the scale factor R(t) develops with time. In 1922 Alexander Alexan-

drovich Friedmann combined the Robertson-Walker metric with Einstein’s field equations to

obtain what we now call the Friedmann equation, which relates the time rate of change

of the scale factor to the total mass-energy density ρtot, assumed to be uniform throughout

the Universe. The mass-energy density is however a function of time, ρtot(t). The resulting

model of the Universe is called the Friedmann-Robertson-Walker model or simply the

FRW cosmology. The Friedmann equation is:

H2(t) ≡
(

Ṙ

R

)2

=
8π

3
ρtot(t)−

K

R2
Friedmann equation (4)

In this equation Ṙ is the first time derivative of R (local time, remember). The Friedmann

equation defines the Hubble parameter H to be equal to Ṙ/R, and will therefore change

value as the scale factor R(t) evolves with time. So remember whenever you see H that it is

really H(t). In this project we almost always use the value of H at the present time t0 and

give it the symbol H0.

H0 ≡ H(t0) Hubble parameter NOW (5)

AN ASIDE ON UNITS: In the Friedmann equation (4), R is dimensionless, K has the

units of inverse distance squared, and distance time and mass are all measured in the unit

of length. Therefore density has the units of length/length3 = length−2. If you want to

measure mass in conventional units, such as kilograms, then (see Section 6, Chapter 2 of

EBH) the Friedmann equation becomes.

H2(t) ≡
(

Ṙ

R

)2

=
8πG

3
ρtot(t)−

Kc2

R2
Friedmann equation, conventional units (6)

For simplicity we will use equation (4) in the following analysis.

Equation (4) can be written in a form that shows how expansion fights with matter

density to determine the curvature K. Multiply through by R2 and rearrange:

K =
8π

3
ρtotR

2 − Ṙ2 = R2

(

8π

3
ρtot −H2

)

. (7)
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A positive density term in (7) tends to increase the value of K, giving the Universe positive

curvature. In contrast, a large expansion rate H tends to lower the value of K, making the

Universe more flat. In all cases, ρtot(t) and R(t) vary together so as to make K independent

of time.

We need a benchmark value for the density ρtot, something with which to compare ob-

served values. A useful reference density is the critical density ρcrit(t), which is the total

density for which spacetime is flat, a condition described by the value K = 0. For densities

greater than the critical density (ρtot > ρcrit) the Universe has a closed geometry (K > 0).

For densities less than the critical density (ρtot < ρcrit) the Universe has an open geometry

(K < 0). The Friedmann equation (4) shows that the Hubble parameter H is a function of

time. Therefore the critical density also changes with time. We define the critical density

ρcrit, 0 as the value NOW, determined by the the Hubble constant H0, the present value of

the Hubble parameter. Substitute this value and K = 0 into the Friedman equation (4) to

obtain:

ρcrit, 0 ≡
3H2

0

8π
critical density NOW (8)

The ratio of density to critical density is a parameter used widely in cosmology. This

parameter is given the Greek symbol capital omega, Ω:

Ωtot, 0 ≡
ρ(t0)tot
ρcrit, 0

(9)

We retain the subscript zero as a reminder that we mean the density measured NOW relative

to the critical value NOW.

Query 3
Value of the critical density NOW

A. Estimate the numerical value of the critical density in equation (8)

in units of (meters of mass)/meter3 = meter−2. For the value of H0 see

equation (29) and the following equations later in this project.

B. Express your estimate of the value of the critical density as a fraction

of the density of water, one gram per cubic centimeter.

C. Express your estimate of the value of the critical density in units of

hydrogen atoms (effectively, protons) per cubic meter.

The Friedmann equation (4) relates the rate of change of the scale factor R(t) to the

contents of the Universe. Before we can solve this equation for R(t), we need to list the

contributions to the total density and determine the time-dependence of each. We now

6



examine some of the strange properties of the components of the total density ρtot inferred

from recent observations.

4 Contents of the Universe: How Density Components

Vary with the Scale Factor R(t)

The Friedman-Robertson-Walker model of the Universe has been widely accepted for 40 years

but observations during that time have significantly modified our picture of the contents of

the Universe. Our knowledge has grown significantly over even just the last 5 years. Such is

the excitement of being at the research edge of so large a subject.

We group the contents of the Universe into three broad categories: matter, radiation, and

dark energy. Each category is chosen because of the way its contribution to the total density

changes with time. We describe these changes in terms of the scale factor R(t), leaving until

later (Section 6) the derivation of how this scale factor changes with time.

4.1 Matter

The first category we refer to as matter. By matter we mean particles or nonrelativistic

objects with rest mass much greater than the mass-equivalent of their kinetic energy. Objects

in this category are:

• STARS, including white dwarfs, neutron stars, and black holes.

• GAS, mostly hydrogen, with a smattering of other elements and dust.

• DARK MATTER, the non-luminous stuff, as yet unidentified, that makes up most

of the matter in the Universe.

Stars, interstellar gas and dust are made of atoms. Cosmologists sometimes call atomic

matter baryonic matter because most of the mass is made of baryons (essentially protons

and neutrons).

Current observations lead to the estimate that luminous matter, the stars we can see,

make up about one percent of the density of the Universe, with stars and gas together

totaling four percent. It seems incredible that all the stars, individually and in galaxies and

groups of galaxies, that we observe from Earth’s surface and from satellites, taken together,

have only a minor influence on the development of the Universe. Yet this is what we observe.

Dark matter is currently estimated to account for approximately 23 percent of the mass-

energy of the Universe. What is dark matter? And how do we know that it contributes so
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large a fraction? We do not know what dark matter is, but from observations we infer its

density and some of its properties. From the rotation curves of galaxies (the tangential

velocities of gas as a function of distance from the center) we can derive the magnitude

of gravitational forces needed to keep the galaxies from flying apart, and, by implication,

the amount and distribution of matter in them. The results show that luminous matter in

a galaxy, which of course is all that we can observe directly, typically provides only a few

percent of the mass required to bind the galaxy. Dark matter was originally postulated in the

1970s to complete the total needed to keep each galaxy together as it rotates. Observations

on the dynamics of galaxy clusters — first made in the 1930s and greatly refined in the 1980s

and 1990s — provide further evidence for the presence of dark matter.

The energy density of a gas of particles (whether particles of baryonic matter or dark

matter) is the number density n times the energy per particle nE. For nonrelativistic matter

the energy per particle is well approximated by its mass m, so the matter density becomes

ρmat = nm. The mass of the particle is a constant (independent of the expansion of the

Universe). However, the number density n, the number of particles per unit volume, drops

as the volume increases, varying with the scale factor as R−3, since volume is length cubed.

By the definition in equation (2), the scale factor R(t) has the value unity at the present age

of the Universe t0. Call ρmat, 0 the value of the matter density at the present time. Then at

any time t we have:

ρmat(t) = ρmat, 0R
−3(t) (10)

Equation (10) tells us that if we know the matter density today and the scale function R(t)

we can determine the value of the matter density at any other value of the scale factor.

4.2 Radiation

The category radiation includes photons and other relativistic particles such as neutrinos.

Recently we have discovered that neutrinos have a small mass (less than one millionth of the

mass the electron), so that neutrinos may be relativistic (in which case they are counted as

radiation) or non-relativistic (in which case they are called “hot” dark matter).

At the present stage of the Universe radiation is a whisper, but it used to be a shout.

Shortly after the Big Bang, radiation contributed the dominant fraction of the mass-equivalent

energy density of the Universe. In the hot ionized plasma of the early Universe, radiation and

matter were tightly coupled: photons were continually scattered by free electrons. About

380,000 years after the Big Bang the Universe cooled to a temperature of about 3000 K at

which point electrons combine with protons to create hydrogen gas (with some helium and

a trace amount of lithium). At that time the Universe became transparent to radiation, and
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photons were essentially decoupled from matter. The cosmic microwave background radia-

tion we observe in all directions is a view of that early transition from opaque to transparent,

with later expansion lowering the temperature to 2.73 degrees Kelvin. It is amazing to think

that the low-energy photons that we detect as background radiation between the stars have

been streaming freely for billions of years, not interacting with a single thing until they enter

our detectors.

The number of photons emitted by all the stars in the history of the Universe is tiny

compared with the number of photons created in the hot Big Bang. In the early Universe

these photons were continually being emitted, absorbed, and scattered, but the number of

photons is approximately constant as the Universe expands. Therefore the number of photons

per unit volume varies inversely as the scale factor: R−3(t), just as matter does. But there

is an additional effect for photons. Photons contribute to the local density through their

energy. The equation E = hf = hc/λ connects the energy E of a photon to the wavelength

λ of the corresponding classical wave. As this wave propagates through an expanding space,

its wavelength increases in proportion to R(t). (This increased wavelength is observed as the

redshift of light from distant galaxies. This effect is related to, but different from, the Doppler

shift of light from a receding object in the flat spacetime of special relativity.) An increasing

wavelength implies a decrease in the energy of each photon, an energy proportional to R−1.

This leads to an extra (inverse) power of R compared with that for matter in equation (10)

because of the drop in energy of each photon as the Universe expands. Let ρrad, 0 represent

the density of radiation at t0, the present age of the Universe. Then the radiation density

for other values of the scale factor R(t) obeys the equation

ρrad(t) = ρrad, 0R
−4(t) (11)
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Query 4 Mass density of radiation

The cosmic microwave background radiation has a nearly perfect black-

body spectrum with current temperature T = 2.726 K. The energy

density (energy/length3) of blackbody radiation in conventional units

is given by the equation

urad =
π2

15

(kBT )
4

(ch̄)3
≡ aradT

4 (12)

Here kB is the Boltzmann constant, c is the speed of light, and h̄ ≡ h/2π

where h is the Planck constant. The summary symbol arad is called the

radiation constant.

A. Find the present value of the mass density corresponding to the cos-

mic background radiation, in kilograms per cubic meter.

B. Your result of part A is what fraction or multiple of the critical

density, ρcrit, 0?

C. Take the average energy of a photon in the gas of cosmic background

radiation surrounding us to be kBT . Estimate the number of photons

per cubic meter. Compare your result with the critical mass density

expressed in the number of hydrogen atoms (effectively, protons) per

cubic meter.

D. At what absolute temperature T would blackbody radiation mass

density be equal to the value of the critical density ρcrit, 0 at the present

time?

4.3 Dark Energy

After matter and radiation, the remaining contributor to the contents of the Universe is

rather bizarre stuff which has been given the name dark energy. Dark energy is entirely

unrelated to dark matter, the major component of matter. Dark energy is detected only

indirectly, through its effects on cosmic expansion. Its composition is unknown. Dark energy

is the component of the total density that accounts for the observed (and initially surprising)

increase with time in the rate of expansion of the Universe. Observations described in
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Sections 8 and 9 lead to the estimate that approximately 73 percent of the mass of the

Universe is in the form of dark energy.

Dark energy is a generic term which encompasses all of the various possibilities for its

composition. One possibility is the so-called vacuum energy. We often think of the

vacuum as “nothing,” but that is not the picture offered by modern physics through quantum

field theory, which defines the vacuum to be the state of lowest possible energy. As the

Universe expands, this lowest possible density does not drop but rather remains constant.

Of what does vacuum energy consist? One way of thinking of it is virtual particles that

are continually created and annihilated, according to quantum field theory. The existence

of virtual particles is a well-known and well-tested consequence of the standard model of

particle physics. For example, the presence of virtual particles in the surrounding vacuum

has a small but detectable effect on the energy levels of hydrogen. Virtual particles surely

have gravitational effects, but it has proved very difficult to estimate the magnitude of these

effects.

Cosmological effects of vacuum energy are described using the cosmological constant

symbolized by the capital Greek lambda, Λ. In 19197, Einstein added the cosmological

constant to his original field equations in order to make the Universe static, to keep it

from collapsing from what he assumed must be an everlasting constant state. Einstein later

removed the cosmological constant from the field equations when Hubble showed in 1929 that

the Universe is expanding, but the cosmological constant continues to pop up in different

theories of cosmology, as it does here as a possible form for dark energy. The presence of

the cosmological constant in modern theory does not require a static Universe. In the 1960s,

Zel’dovich and Gliner showed that vacuum energy is equivalent to the cosmological constant.

Other more complicated candidates for dark energy could have time-dependent energy

density, but there is no current consensus about these possibilities. A full description of dark

energy may have to await the development of a complete theory of quantum gravity, which

does not yet exist. In this project we will not consider time-dependent dark energy.

IF vacuum energy accounts for dark energy, THEN as the Universe expands the density

of dark energy remains constant: ρdark energy(t) = constant. We use the subscript Λ for dark

energy to remind ourselves that we are assuming vacuum energy accounts for dark energy,

and take ρΛ, 0 to be the the symbol for dark energy at the present time. We are assuming

that this density has this same value at every time, earlier or later:

ρdark energy(t) = ρΛ(t) = ρΛ, 0 = constant (13)

The time-independent density of vacuum energy contrasts with the density of matter

(proportional to R−3) and the density of radiation (proportional to R−4), both of which

11



Figure 1: See Figure 2 in the accompanying document.

decrease as the Universe expands. As a result, dark energy influences the development of

the Universe more and more as R(t) increases.

4.4 Variation of the Total Density with the Scale Factor R(t)

We can now write an expression for the time dependence of total density from equations

(10), (11), and (13).

ρtot(t) =
ρmat, 0
R3(t)

+
ρrad, 0

R4(t)
+ ρΛ, 0 (14)

Divide through by the critical density at the present time, equation (8), to express the result

as fractions of the present critical density, as in equation (9):

ρtot(t)

ρcrit, 0
=
ρmat, 0
ρcrit, 0

R−3(t) +
ρrad, 0

ρcrit, 0
R−4(t) +

ρΛ, 0

ρcrit, 0
(15)

We want to plot equation (15) as a function of the scale factor R(t). To do this we need

numerical values for the three fractional densities in that equation. These fractional densities

also define contributions to the total density parameter Omega defined in equation (9).

In Sections 8 and 9 we describe current observations that yield the approximate values:

Ωmat, 0 ≡
ρmat, 0
ρcrit, 0

= 0.27± 0.04 (16)

ΩΛ, 0 ≡
ρΛ, 0

ρcrit, 0
= 0.73± 0.04 (17)

In QUERY 4 you showed that at the present time, the background radiation yields approx-

imately 5× 10−5. Neutrinos add approximately 3.4× 10−5, so the total is

Ωrad, 0 ≡
ρrad, 0

ρcrit, 0
= 8.4× 10−5 (18)

Figure 1 is a log-log plot of equation (15) with numerical values given in equations (16),

(17), and (18). The display also shows plots for each separate contribution to the total

density. Because each of these individual quantities is proportional to a power of R(t), their

plots are straight lines on the log-log graph. Figure 1 shows that the radiation contribution

has little effect at present, but was dominant at early stages because of the multiplier R−4

in equation (15). For a while after the radiation-dominated era, matter had the greatest
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influence on the evolution of the Universe. But the influence of matter is also fading by now

because of the multiplier R−3. The contribution of dark energy was negligible in the distant

past but has an increasing effect at the present and later stages of expansion, because its

density remains constant as densities of matter and radiation decay away with the increase

in R(t). If the data and assumptions behind Figure 1 are correct, we are at the beginning

of the era dominated by dark energy.

Query 5
Contributions to the Density

A. What are the approximate values of ρtot(t)/ρcrit, 0 at the following

times?

• at the end of the radiation-dominated era (that is, when radiation

and matter make approximately equal contributions)

• at the end of the matter-dominated era (that is, when matter and

dark energy make approximately equal contributions)

• NOW

• when R(t) = 106

B. What additional information do you need to answer the question:

How many billion years ago did the radiation-dominated era end?

5 Evolution of Model Universes with Different Curva-

ture

Using the Friedmann equation, we can analyze the development of alternative model Uni-

verses with different assumptions for the curvature K. We repeat the Friedmann equation

(4), here:

H2 ≡
(

Ṙ

R

)2

=
8π

3
ρtot −

K

R2
Friedmann equation (19)

To put equation (19) in a more useful form, divide through by H0 and substitute for the
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critical density from equation (8):

(

H

H0

)2

=

(

Ṙ

H0R

)2

=
ρtot
ρcrit
− K

H2
0R

2
(20)

Re-express equation (20) in terms of the Omega in equations (16), (17), and (18):

(

H

H0

)2

=

(

Ṙ

H0R

)2

= Ωmat, 0R
−3(t) + Ωrad, 0R

−4(t) + ΩΛ, 0 −
K

H2
0R

2
(21)

For the present time t0, when R(t0) = 1, we can write equation (21) in the very simple

form:

1 = Ωmat, 0 + Ωrad, 0 + ΩΛ, 0 −
K

H2
0

NOW (22)

This equation allows us to determine the curvature parameter K from observations of the

values of the component Omegas. Current observations lead to the conclusion that the

Universe is flat (K = 0).

For any arbitrary time, equation (21) can be rearranged to read:

Ṙ2(t)−H2
0

[

Ωmat, 0R
−1(t) + Ωrad, 0R

−2(t) + ΩΛ, 0R
2(t)

]

= −K (23)

Compare equation (23) with the corresponding Newtonian expression derived from the

conservation of energy for a particle moving in the x-direction subject to a potential V (x):

ẋ2 +
2V (x)

m
=

2Etotal

m
Newton (24)

In the Newtonian case we can get a qualitative feel for the particle motion by plotting

V (x) as a function of position and drawing a straight line at the value of Etotal. We use

equation (23) for a similar purpose, to get a qualitative feel for the evolution of the Universe.

Rewrite equation (23) as:

Ṙ2 + Veff(R) = −K (25)

Here the −K on the right takes the place of total energy, and Veff(R) is an effective

potential given by the equation

Veff(R) ≡ −H2
0

[

Ωmat, 0R
−1(t) + Ωrad, 0R

−2(t) + ΩΛ, 0R
2(t)

]

(26)

We summarize here the assumptions on which equations (23), (25), and (26) are based.

ASSUMPTIONS FOR THE DEPENDENCE OF Ṙ ON R(t)

1. The Universe is homogeneous (the same in all locations)

14



Figure 2: See Figure 3 in the accompanying document.

Figure 3: See Figure 4 in the accompanying document.

2. The Universe is isotropic (the same as viewed in all directions)

3. Dark energy is vacuum energy and therefore its density is constant, independent of

R(t).

4. Background assumptions: There are no other forms of mass-energy in the Universe;

spacetime has four dimensions; general relativity is correct; the Standard Model of

particle theory is correct, and so on.

Figure 2 plots Veff/H
2
0 as a function of R(t), using the approximate values of the Omegas

in equations (16), (17), and (18). For the range of R(t) plotted, radiation has negligible

effect. Figure 2 carries a lot of information about the history and alternative futures of the

Universe according to different values of k. In the Newtonian analogy, an effective potential

with a positive slope yields a force tending to slow down positive motion along the horizontal

axis, while the portion of the effective potential with a negative slope yields a force tending

to speed up positive motion along the horizontal axis. These two conditions occur to the left

and the right, respectively, of the peak at R(t) ≈ 0.55. By analogy, then, R(t) decelerates

to the left of R(t) ≈ 0.55 and accelerates to the right of R(t) ≈ 0.55. This acceleration is

due to dark energy. (CAUTION: Cosmological models described in older textbooks, written

before dark energy was shown to be significant in the observed expansion of the Universe,

effectively assume that ΩΛ, 0 = 0.)

To check your understanding of the physical results summarized in Figure 2, answer

questions in the following three QUERIES. Answers to some of these questions appear at

the end of this project. Figure 3 is Figure 2 stripped of most of its labels, so you can make

multiple copies on which to construct graphical answers to questions in these QUERIES.
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Query 6
The Friedmann-Robertson-Walker Universe

The heavy line in Figure 3 represents the prediction of the Friedmann-

Robertson-Walker Universe. Answer the following questions about the

predictions of this model under the assumption that the Universe begins

with a Big Bang. Make a reasonable assumption about the qualitative

influence of radiation on Veff(R) for small R(t).

1. True or False: The descending heavy curve to the right of R(t) ≈
0.55 says that the Universe is contracting after R(t) reaches this

value.

2. Can the Universe be closed and expand forever?

3. Can the Universe be closed and recontract?

4. Can the Universe be open and expand forever?

5. Can the Universe be open and recontract?

6. Can the Universe be flat and expand forever?

7. Can the Universe be flat and recontract?

8. Describe qualitatively the evolution of a flat Universe (K = 0). Be

specific about the evolution of R(t) in the region to the right of the

peak in the curve of Veff/H
2
0 .

9. What point on the graph of Figure 3 corresponds to a value of K

that would lead to a static Universe? How could the Universe arrive

at this configuration starting from a Big Bang? Is this static con-

figuration stable or unstable, and what are the physical meanings

of the terms stable and unstable?

6 Solution for the Scale Factor R(t)

Thus far we have stuffed all our ignorance about the time development of the Universe

into the scale factor R(t), as given in equation (14) and plotted along the horizontal axes
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in Figures 1–3. We need to determine how R(t) itself develops with time. To do this we

integrate the Friedman equation (4) as modified in equation (23). Using equation (22), the

latter equation can be rearranged to read:

dR

dt
= H0[Ωmat, 0(R

−1 − 1) + Ωrad, 0(R
−2 − 1) + ΩΛ, 0(R

2 − 1) + 1]1/2 (27)

By eliminating the curvature we have shown that the Omegas completely determine the

expansion of the universe — they are important! Now invert this equation and derive an

integral with the limits from NOW (R(t0) = 1) to any other arbitrary R(t):

t− t0 =
1

H0

∫ R

1

dR′

[Ωmat, 0(R′−1 − 1) + Ωrad, 0(R′−2 − 1) + ΩΛ, 0(R′2 − 1) + 1]1/2
(28)

Here R′ is the dummy variable of integration. We can integrate equation (28) numerically

from the present time t0 to either a future time t (R > 1) or to an earlier time (R < 1). The

Big Bang occurred when R = 0.

Query 7
Various kinds of Universes

Integrate equation (28) in three simplifying cases, under the assumption

that spacetime is flat (K = 0).

A. Assume the Universe contains only matter and that Ωmat, 0 = 1. Find

an expression for R(t) and the exact value of H0t0.

B. Assume the Universe contains only radiation and that Ωrad, 0 = 1.

Find an expression for R(t) and the exact value of H0t0.

C. Assume that the Universe contains only dark energy and that ΩΛ, 0 =

1. Find an expression for R(t).

D. Optional. Discuss the validity of your results for parts A, B, and C

for t < t0 and in particular for t = 0.

A major and a minor difficulty stand in the way of carrying out the integration of the

full expression (28). The minor difficulty is expressing the result in units most convenient

for us. Recall that the scale factor R(t) is unitless and is defined to have the value unity at

present time [equation (2)]. We here choose to express time in years, so the time derivative

Ṙ(t) has the units years−1. Therefore, according to equation (27), the current value of the

Hubble constant H0 must also be expressed in the unit of years−1. Recent observations yield
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Figure 4: See Figure 5 in the accompanying document.

the following approximate value for H0:

H0 = 70(+4,−3) kilometers/second

Megaparsec
(29)

Convert this to the required units using the conversion factors:

1 parsec = 3.26 light years (30)

1 light year = 9.461× 1012 kilometers (31)

1 year = 3.157× 107 seconds (32)

You can verify that the result is the value:

H0 ≈ 7.26× 10−11 year−1 (33)

It is not a coincidence that the coefficient H−1
0 = 1.38 × 1010 years in (28) has a value

approximately equal to the postulated age of the Universe: t0 ≈ 13.7 billion years.

Integrating equation (28) requires that we know the various Omegas. The sum of all

Omegas determines the curvature parameter according to equation (22). In Section 8 we

report observations that tend to support the conclusion that Universe is flat (Ωtot,0 = 1) or

very nearly so. Therefore we integrate (28) numerically for K = 0 and present the results in

Figure 4.
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Query 8
End of One Era and Beginning of Another Era

Find the value of R(t) at the end of the matter-dominated era, using the

vertical line at this value in Figure 1. Notice that the scales in Figure 1

are logarithmic.

A. Use Figure 4 to find the time (since the Big Bang) for the end of the

matter-dominated era. Had our Sun begun to burn at this time?

B. Similarly, find a value of R(t) for the beginning of the dark-energy-

dominated era from the corresponding vertical line in Figure 1. Extrap-

olate the curve in Figure 4 to estimate (plus or minus 2 billion years)

the time since the Big Bang at which the dark-energy-dominated era will

begin. At 30 years per human generation, how many generations from

NOW will this era begin?

7 WHY is the Rate of Expansion of the Universe In-

creasing?

Figure 4 displays changes in the scale factor R(t) of the Universe as a function of time. The

slope of the curve at any point is the velocity Ṙ(t) of the expansion at that time. Changes in

the slope correspond to changes in this velocity. We can call the rate of change of velocity the

acceleration of the scale factor, R̈(t). Why does the Universe change its rate of expansion?

For the matter-dominated era, one can understand that the matter mutually attracts and

“holds back” or “slows down” the expansion, as shown in Figure 2. But the expansion in

the dark energy-dominated era clearly violates this explanation, since the rate of expansion

increases there. What is the physical reason for this increased expansion rate? This question

is the subject of the present section.

In the following QUERY 9 you will show that the second time derivative, the acceleration

R̈ of the scale factor, depends not only on the density ρtot but also on pressure. Pressure,

along with total density, appears in Einstein’s field equations. In special relativity, pres-

sure and energy density transform into each other under Lorentz transformations in a way

analogous to (but not the same as) electric and magnetic fields. Density in one frame im-

plies pressure in another. Since the Einstein field equations are written to be valid in any
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frame, pressure must make a contribution to gravity. Positive pressure has an attractive

gravitational effect similar to positive density.

The gravitational effect of pressure may seem paradoxical: the greater the positive pres-

sure, the more negative the value of the acceleration. We are used to watching pressure

expand things like a bicycle tire. The stretching surface of an expanding balloon is often

used as an analogy to the expanding space of our Universe. These images can carry the

incorrect implication that positive pressure is what makes the Universe expand. A balloon is

expanded by pressure differences: the pressure inside the balloon is higher than the pressure

outside combined with the balloon tension. Pressure differences produce mechanical forces.

By contrast, we are considering a homogeneous pressure, the same everywhere – there is no

“outside” of the Universe for it to expand into. There is no mechanical force of pressure in

this case, only a gravitational force.

Here comes the big surprise. In QUERY 10 you show that dark energy leads to negative

pressure. In contrast to positive pressure, negative pressure tends to increase the rate of

expansion of the Universe. And recent observations bring evidence that we live in a Universe

whose rate of expansion is increasing, not decreasing as our model would predict if only

matter and radiation were present.

Now for the details.

The first law of thermodynamics says that as the volume of a box of gas increases by

dV , the energy of the gas inside it decreases by an amount PdV where P is the pressure of

the gas. [ We use capital P to represent the pressure because lower case p is easily confused

with rho (ρ), which often appears in the same equation.] The energy change PdV goes into

the work done by the force due to the pressure acting on the outward-moving wall of the

box. The energy of the gas is simply the volume that it occupies times its energy density.

However, we measure energy in units of mass, so the energy density is just the mass density

ρtot. Therefore we have

d(ρtotV ) = −PtotdV (34)

It turns out that this relation holds whenever the volume of a gas changes, regardless of the

shape of the box. It even holds if there are no walls at all! It implies a general result: an

expanding gas cools.
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Query 9
Acceleration of the Scale Factor

A. Divide the energy conservation equation (34) through by dt and apply

it to a local volume V that has the current value V0 and expands (or

possibly contracts) with the Universe according to the equation V =

V0R
3. Show that

ρ̇tot = −3
Ṙ

R
(ρtot + Ptot) (35)

B. Rewrite the Friedmann equation (19) as

Ṙ2 =
8π

3
ρtotR

2 −K (36)

Take the time derivative of both sides of (36) and substitute equation (35)

to obtain the equation for the acceleration of the cosmic scale factor:

R̈

R
= −4π

3
(ρtot + 3Ptot) (37)

This equation predicts that for a positive total density and positive total

pressure, the scale factor will decelerate with time. The surprise comes

when the pressure term is calculated for dark energy.
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Query 10
Pressure from Different Sources

A. Solve equation (35) for Ptot and show that the result is:

Ptot = −
R

3Ṙ
ρ̇tot − ρtot (38)

Equation (38) is linear in ρ̇tot and ρtot. Therefore we can apply it sepa-

rately to the different components of which ρtot and Ptot are composed.

In parts B through D below, apply equation (38) to each component

of the density to find the the individual pressures due to matter, dark

energy, and radiation. ( Hint: In each case express the first term on the

right of (38) in terms of the corresponding fractional density.)

B. Apply equation (38) to nonrelativistic matter for which ρmat(t) =

ρmat, 0R
−3(t). What is the pressure Pmat(t)?

C. Apply equation (38) to dark energy for which ρΛ(t) = constant =

ρΛ, 0. What is the pressure PΛ(t)? This surprising result has a large

effect on the fate of the Universe.

D. Finally, apply equation (38) to a gas of photons. Though we can

neglect ρrad in describing how the Universe behaves today, Figure 1 shows

that in the early Universe ρrad was in fact larger than the corresponding

matter term ρmat and could not be neglected. For radiation, ρrad(t) =

ρrad, 0R
−4(t). What is the pressure of radiation Prad(t)?

E. Substitute your results of parts B through D into equation (37) to

find an expression for R̈ as a function of R(t):

R̈ = −4π

3
[ρmat, 0R

−2(t) + 2ρrad, 0R
−3(t)− 2ρΛ, 0R(t)] (39)

Recast equation (39) in terms of Ω by multiplying and dividing the right side of (39) by

H2
0 and substituting expression (8) for the critical density

R̈ = −H
2
0

2
[Ωmat, 0R

−2(t) + 2Ωrad, 0R
−3(t)− 2ΩΛ, 0R(t)] (40)

The result of part C of QUERY 10 tells us that the pressure of the vacuum is negative,

a result unfamiliar in elementary thermodynamics. However, it is perfectly physical. The

22



Figure 5: See Figure 6 in the accompanying document.

vacuum has constant energy density produced by quantum fluctuations. Conservation of

energy — represented by equation (35) — then implies that the pressure must be negative.

Negative pressure — but not negative mass density — is physically allowed.

Equation (40), plotted in Figure 5, gives us a history of the changes in expansion rate

since the Big Bang. Early in the expansion, when the scale factor R(t) was very small,

the dominant term in (39) was due to radiation. (The radiation-dominated era occurred

too early to appear in Figure 5.) As R(t) increased, matter came to dominate. These two

contributions resulted in a negative acceleration of R(t), that is, a decrease in the expansion

rate Ṙ. More recently, as R(t) has become large, the dark energy term has become more

and more important. At the present age of the Universe, the net result is a positive value of

the acceleration R̈(t), that is, an increase in the expansion rate Ṙ.

What is the physical reason for these changes in acceleration of the scale factor? Simply

that matter has mass and zero pressure, while radiation has equivalent mass and positive

pressure. Both mass and positive pressure contribute to a deceleration of R(t), a slowing

down of Ṙ(t), as seen in equation (37). In contrast, dark energy contributes positive mass

but negative pressure. The same equation shows us that negative pressure contributes to an

acceleration of R(t), that is a speeding up of Ṙ(t), an effect that dominates as R(t) becomes

large.

Use Figures 4 and 5 to answer the following QUERY.
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Query 11
Acceleration of the Scale Factor of the Universe

According to the Friedmann-Robertson-Walker model of the Universe

with values of its contents displayed in Figures 4 and 5:

1. How can the acceleration R̈ be negative while the Universe is ex-

panding?

2. You are riding on a large rock during the epoch in which R̈ goes

from negative to positive. By what observations can you verify

that this change has taken place?

3. How many years before NOW was the acceleration R̈ of the scale

factor equal to zero? Was our sun shining at that time?

4. Estimate many years in the future the acceleration will be ten times

what it is now.

Now that we have a model for the time development of the Universe, we need to validate

the assumptions that went into details of applying that model, namely the values of Ωmat,0

and ΩΛ,0 given in equations (16) and (17) along with the value of Ωrad,0 given in equation

(18).

8 Observations of the Contents of the Universe

8.1 Galaxy Rotation: Evidence for Dark Matter

How do we know that dark matter exists around galaxies? The most direct evidence comes

from observing the orbits of stars or gas around a galaxy. Spiral galaxies are perfect for this

exercise — their rotating disks contain neutral hydrogen gas that emits radiation with a rest

wavelength of 21 cm. If the galaxy is edge on, then as gas orbits the galaxy it moves directly

away from us on one side of the galaxy and directly towards us on the other side. Using the

Doppler effect, astronomers can measure the speed of the gas as a function of its distance

from the center of the galaxy. The result is a rotation curve.

Figure 6 shows the rotation curve of a nearby edge-on spiral galaxy. It is quite different

from a graph of the orbital speeds of planets in the Solar System, which decrease with
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Figure 6: Rotation curve for spiral galaxy NGC 3198, from Begeman 1989, As-

tronomy and Astrophysics, 223, 47.

increasing distance from the sun according to Kepler’s Third Law. Spiral galaxies by contrast

almost always have nearly-constant rotation curves at radii outside of their dense centers.

The evidence for dark matter comes when we ask what one would expect the rotation

curve to be if the gravitating mass were composed of only the observed stars and gas. Optical

measurements of spiral galaxies show that the surface luminosity density is exponential to a

very good approximation:

Σ(R) = Σ0 exp(−R/h) (41)

The surface density is defined as the total luminosity emitted along a column perpendicular

to the galactic disk; if ρ(r) is the volume density, then Σ(R) =
∫∞
−∞ ρ(

√
R2 + z2) dz. It

has units of luminosity (watts or solar luminosities) per unit area (square meters or square

parsecs).

The form of equation (41) has two constants: Σ0, the central surface luminosity density,

and h, the disk scale length. For NGC 1398 the approximate values for these parameters

25



are

Σ0 = 100 Solar Luminosities/Parsec2 , h = 2.7 kilparsec . (42)

One solar luminosity is the amount of power emitted by the sun in optical light. To get the

total luminosity emitted between radii R and R + dR, multiply by the area of the annulus:

Σ(R) 2πR dR. The total light emitted out to radius R is follows immediately by integration.

To predict the rotation curve arising from luminous matter we need to how much mass

there is, not how much light. If the luminous matter in galaxies is mainly stars like the sun,

then the light in solar luminosities equals the mass in solar masses. In other words, if the

total light emitted interior to radius R is L(R), then the total luminous mass (stars and

gas) is M(R) = ΥL(R) where Υ = 1 (Solar Mass)/(Solar Luminosity) is a factor called the

mass-to-light ratio. Not all stars have the same mass-to-light ratio. A reasonable range for

spiral galaxies is 0.5 < Υ < 5 in units of (Solar Mass)/(Solar Luminosity).

Query 12 applies these ingredients so that you can show for yourself that NGC 3198

contains substantial amounts of dark matter.

Using galaxy rotation curve measurements, and a related technique in clusters of galaxies

that uses X-ray emitting gas, for about 20 years astronomers have estimated 0.1 < Ωmat,0 <

0.4. The uncertainty was relatively large (a factor of 4!) because measurements based on

luminous “tracers” (such as gas in galaxies or clusters) are insensitive to dark matter far

away from galaxies. However, over the last decade increasingly sophisticated measurements

of dark matter in and around galaxies have led to a consensus range 0.2 < Ωmat,0 < 0.35.
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Query 12
Dark Matter from a Rotation Curve

Figure 6 shows the rotation curve of NGC 3198. Combining it with the

surface luminosity density of equation (41), one can show that the galaxy

contains far more mass than can be accounted for by the stars.

Make the following assumptions:

1. Motion of stars in a galaxy can be described using Newtonian me-

chanics.

2. The mass density of the galaxy is spherically symmetric (but a

function of radius R). (The circular speed has approximately the

same value regardless of whether the mass is distributed in a thin

disk or in a more spherical halo.)

3. Stars in the galaxy move in circular orbits at a speed V that is a

function of radius R.

4. The surface mass density follows the same function as the surface

luminosity density, implying that the mass enclosed in a sphere of

radius R is

M(R) = Υ
∫ R

0
Σ0e

−r/h 2πr dr . (43)

A. Set up the Newtonian equation of motion and use it to find an ex-

pression for the circular speed V as a function of radius R, in terms of

the enclosed mass M(R).

B. Carry out the integration in equation (43) and use it to obtain a

prediction for V (R). Qualitatively describe the predicted V (R). Does it

have a maximum value? Does it approach a nonzero constant as R→∞?

If not, how does it behave for RÀ h?

C. The observed rotation curve will exceed the predicted one if there

is dark matter not accounted for by equation (43). Using Figure 6 and

assuming that the luminous matter predominates for R < 5 kpc, what

is the maximum mass-to-light ratio Υ for the luminous matter in NGC

3198?

D. Using the results of the previous parts together with Figure 6, deter-

mine the ratio of total mass to luminous mass contained within 30 kpc

from the center of NGC 3198.
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Figure 7: See the figures on page G-20 of EBH.

8.2 Type IA Supernovae: Standard Candles Revealing Dark En-

ergy?

The rate at which the Universe expands actually increases with time. This amazing conclu-

sion was reached in 1998 by two separate groups, one group including Adam Riess, Alexei

V. Filippenko, and eighteen other people, the other group including Saul Perlmutter and

thirty-one other people.

These observers use light from an exploding supernova of a particular kind, the so-called

Type Ia supernova. A Type Ia supernova results when a white dwarf star gradually accretes

mass from a large binary companion, finally reaching a mass at which the white dwarf

becomes unstable and explodes into a supernova. The “slow fuse” on the gradual accretion

process may lead to an explosion of almost the same size on each such occasion, giving us

a “standard candle” of the same intrinsic brightness, provided that nuclear burning has left

every white dwarf with the same nuclear composition. If so, the brightness of the explosion

as seen from Earth provides a measure of the distance to the supernova. The cosmological

redshift of the light tells us how fast the supernova is receding. Because supernovae (the

plural of supernova) are so bright, they can be seen at a very great distance, which brings

us information about the Universe much of the way back to the Big Bang.

Figure 7 displays the results of observations by both groups. The observed brightness is

plotted on the vertical scale as a function of the redshift on the horizontal scale. Calibration

of the vertical scale is in stellar magnitude, a logarithmic measure of observed brightness.

The larger the magnitude number, the dimmer is the observed star. (The vertical scales of

the two graphs differ by a standard magnitude, which moves the curve up and down without

changing its shape.) The horizontal scale, also logarithmic, is calibrated in what is called

the redshift factor z, defined implicitly in the following equation.

λobserved ≡ (1 + z)λemitted (44)

Here λobserved is the wavelength of light observed from Earth, while λemitted is the wave-

length of the light emitted from the source. The emitted wavelength is known if one knows

the emitting atom, identified from the pattern of wavelengths in the spectrum. As we saw in

Section 4.2, light is redshifted as it travels through the expanding universe — its wavelength
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increases in proportion to R(t). Since R = 1 when the light is observed today, the time at

which the light is emitted is related to redshift by

1

1 + z
= R(temitted) . (45)

Cosmologists routinely use redshift as a measure of cosmic time through this equation because

redshift is directly measurable while the age of the universe at the time of emission is not.

If the data points in the figures lie along a straight line, then the expansion velocity is

proportional to distance, as one would expect if nothing slowed down matter blasted out of

the Big Bang. But the data points in the figure appear to lie slightly above the straight line

for the most distant supernovae (upper right on the diagrams). This could mean that the

most distant supernovae (highest on the vertical axis) are moving away slower than expected

(farther to the left on the horizontal axis than expected). We are watching motions of these

most distant supernovas as they were long ago, because it takes light such a long time to

reach us. These data are taken to mean that the expansion rate long ago was slower than it

is now. In other words, the expansion is accelerating.

8.3 Cosmic Microwave Background Radiation

The Universe is filled with a nearly uniform glow of microwaves having a blackbody spec-

trum called the cosmic microwave background radiation. The intensity as a function of

frequency for such radiation is given by the Planck Law discovered in 1900 by Max Planck:

I(f) =
2hf 3

c3
1

ehf/kBT − 1
. (46)

Radiation with this spectrum (dependence on frequency) is produced by an opaque medium

with temperature T . The microwave background radiation fits a Planck law stunningly well

— the COsmic Background Explorer (COBE) satellite measured the spectrum to match the

Planck Law to about 1 part in 104 in the early 1990s. Figure 8 shows the measured spectrum;

the estimate of the best-fit temperature has increased by 0.001 K to T0 = 2.726 K since this

figure was made in 1998.

At first glance, the microwave background radiation is absurd — the Universe is not

opaque, and the matter we see is much hotter than 3 degrees above absolute zero. However,

the microwave background radiation is a messenger from the early universe, and it has aged

and become stretched out along the trip. The frequency of every light wave decreases in

proportion to 1/R(t) as the universe expands. Remarkably, the form of the Planck law is

preserved by the cosmic redshift. However, as a result of the cosmic redshift the radiation

29



Figure 8: Spectrum of the cosmic microwave background radiation measured

in the 1990s by the FIRAS instrument aboard the COBE satellite. (From the

WMAP website.)

temperature also decreases in proportion to 1/R(t). In other words, at redshift z the radiation

temperature was higher:

T (z) = (1 + z)T0 . (47)

This is an example of how cosmologists use redshift as a proxy for time since the Big Bang.

Most of the gas filling the universe is hydrogen. Neutral atomic hydrogen gas is trans-

parent to microwaves, to infrared light, and to optical light – only when the photon energy

becomes large enough to ionize hydrogen does the gas become opaque. For the conditions

prevailing in the Universe, hydrogen gas ionizes at a temperature comparable to the surface

layer of cool stars, T ≈ 3000 K. Conclusion: the microwave background radiation was pro-

duced at a redshift z ≈ 3000/2.726 = 1100. This radiation gives us a picture of the Universe
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Figure 9: An all-sky map of the cosmic microwave background at high contrast

made by the WMAP satellite. The oval is a projection of the entire sky onto the

page. The colors are “false color” and indicate the temperature of the radiation

ranging from T0 − 2 × 10−4 K (black) to T0 + 2 × 10−4 K (red) where T0 is

the average temperature. The early universe had slight temperature variations.

(Image courtesy of the WMAP Science Team, from the WMAP website.)

nearly 13.7 billion years ago when its age was about 380,000 years old. This is our earliest

view of the universe.

What do we see when we look at the early universe? The spectrum tells only part

of the story. To see the rest, we can look at images of the sky in microwaves. The first

sensitive all-sky maps of the microwave background radiation were made in the early 1990s

by the COBE satellite. In 2001 a new microwave telescope called the Wilkinson Microwave

Anisotropy Probe (WMAP) was launched into orbit. It has greatly refined our picture of

the early universe.

Figure 9 shows an image of the microwave brightness around the sky made by WMAP.

The Planck law is an excellent fit to the spectrum in a fixed direction of the sky; however,

the temperature is not the same in all directions. The temperature varies by a few parts in

105 from place to place in the early universe. These fluctuations are, we believe, the seeds

from which galaxies, stars, and all cosmic structure formed during the past 13 billion years.

In this project we focus on the average properties of the universe rather than the fluctu-

ations. However, the map of fluctuations is also a treasure trove of information about the

cosmic parameters. This is because the pattern of fluctuations in the sky provides a kind of
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fingerprint of the early universe. For example, Figure 9 shows that the fluctuations have a

characteristic angular size of about 1 degree.

The 1 degree scale has a direct physical significance and can be used to measure the

curvature of the universe. The fluctuations in temperature are due to sound waves in the hot

gas of the early Universe: the Universe is filled with a super low frequency static created in the

aftermath of the Big Bang. Sound waves compress and rarify gas, changing its temperature.

Sound waves oscillate in time but they also oscillate in space at a fixed moment of time. The

temperature fluctuations we see in the microwave background give a snapshot of the spatial

variation of these sound waves 380,000 years after the Big Bang!

The 1 degree scale corresponds to the distance that a sound wave could travel from the

time the sound waves were created in the Big Bang until 380,000 years later when they were

revealed to us as fluctuations in the cosmic microwave background radiation. If we know the

size of this “acoustic yardstick” in meters and the distance the radiation has since travelled

to reach our telescopes — and we know the spatial geometry (open, closed, or Euclidean) —

then we can predict the angular size of the fluctuations. In practice, we measure the angular

size and other quantities enabling us to accurately determine the acoustic yardstick size and

the distance travelled. The details are beyond the level of this class, but the result is not.

The angular size measurement implies that the cosmic spatial curvature K is very small

and consistent with zero. The spatial geometry of the Universe appears to be the simplest

possible: Euclidean space. On the other hand, dark matter and dark energy curve spacetime

in such a way that the cosmic expansion accelerates. What a strange Universe we live in!

9 The Universe NOW: The Omega-Plane Diagram

Supernovae and the microwave background radiation constrain the values of Ωmat,0 and ΩΛ,0.

We have already seen that radiation contributes very little to the critical density today. The

major contributors are thus matter (including baryons) and dark energy, which we model as

a cosmological constant.

During the last five years, our knowledge of the Omegas has gone from shadowy outline

to measurements of 10% accuracy. Figure 10 illustrates our current knowledge about the key

parameters based on Type Ia supernovae and the cosmic microwave background radiation.

The microwave background data clearly show that the Universe is close to flat, if not exactly

so. They also imply a nonzero dark energy contribution. Indeed, the microwave background

data impressively support the radical claim made by the supernova observers five years ago

that the universe is accelerating. We found out earlier that the expansion accelerates if

ΩΛ,0 >
1
2
Ωmat,0.
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Figure 10: The Omega Diagram. The parameters Ωm and ΩΛ are called Ωmat,0

and ΩΛ,0 in this project. The curves marked 68% and 95% are confidence regions

based on the Type Ia supernovae measurements — the true values of the parame-

ters probably lie to the upper-right of these boundaries, inside the region marked

SN. The gray-shade regions are the corresponding confidence regions arising from

the cosmic microwave background measurements made by the WMAP satellite.

The dashed line is the locus of flat universe models with Ωm + ΩΛ = 1. Figure

from Spergel et al., preprint astro-ph/0302209.

Figure 10 does not include all of the constraints on the Omegas. When they are applied,

the result is equations (16) and (17). Future satellite missions should shrink the uncertainties

in the Omegas to less than 0.01. Once they do, we may still be left with two outstanding

mysteries: What are the dark matter and dark energy?
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