MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Physics Department

8.231, Physics of Solids I

Due on Sept. 18

Problem set #2

1. X-ray Powder diffraction

X-ray powder diffractions are done for three crystals. Each crystal is formed by one find of atoms. The atoms in the three crystals form a simple cubic (SC), a face centered cubic (FCC), and a body centered cubic (BCC) crystal structures respectively. Let ϕ be the diffraction angle. The diffraction peaks are observed at the following diffraction angles for the three crystals:

Crystal A:
$$\sin \frac{\phi}{2} = 0.127, 0.180, 0.255, 0.285, 0.312.$$

Crystal B: $\sin \frac{\phi}{2} = 0.150, 0.212, 0.260, 0.300, 0.335, 0.367.$
Crystal C: $\sin \frac{\phi}{2} = 0.121, 0.140, 0.198, 0.232, 0.242, 0.280, 0.305.$

- (a) Identify the crystal structures of the crystal A, B, and C.
- (b) Sketch the first four powder diffraction peaks for the SC crystal. Now assume that as we lower the temperature, the SC crystal is changed into the tetragonal structure through a continuous phase transition. Describe and sketch how the above four peaks change as the crystal changes into the tetragonal structure.
- 2. Americium

The figure below shows a primitive unit cell of one crystalline form of the element Americium. The space lattice is hexagonal with $\vec{a_1} = a\hat{x}$, $\vec{a_2} = \frac{1}{2}a\hat{x} + \frac{\sqrt{3}}{2}a\hat{y}$, and $\vec{a_3} = c\hat{z}$. The basis is (000), $(\frac{2}{3}\frac{2}{3}\frac{1}{4})$, $(00\frac{1}{2})$, and $(\frac{1}{3}\frac{1}{3}\frac{3}{4})$.

- (a) Find the reciprocal lattice vectors \vec{G} . Describe in words and sketch the reciprocal lattice.
- (b) Find the structure factors associated with the points (100), (001), and (120) of the reciprocal lattice.
- (c) Calculate the three smallest X-ray diffraction angles in a powder diffraction experiments. Assuming c = 2a and the wave length of the X-ray to be $\lambda = a/10$.
- 3. Form Factor for Atomic Hydrogen

For the hydrogen atom in its ground state, the number density is $n(r) = (\pi a_0^3)^{-1} \exp(-2r/a_0)$. where a_0 is the Bohr radius. Show that the form factor is $f_G = 16/(4 + G^2 a_0^2)^2$.

- 4. Reciprocal Lattice of Conventional versus Primitive Unit Cells
 - (a) Why are there fewer reciprocal lattice points \vec{G} in a given volume of Fourier space if the unit cell of the crystal lattice is primitive than if the unit cell is non-primitive?
 - (b) In view of (a), how can the allowed reflections from a given structure be independent of the choice of the unit cell of the crystal lattice?