MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Physics Department

8.231, Physics of Solids I

Due on Wed., Oct 11.

Problem set #4

1. Let $\psi_x^p = f(r)x$ be the normalized wave function that describes an atomic p_x orbital and let $\psi^s = g(r)$ be the normalized wave function that describes an atomic s orbital. We assume that g(r) and f(r) are positive for large r. We can define a more general atomic p orbital as

$$\psi^p_{\boldsymbol{n}} = f(r) \boldsymbol{r} \cdot \boldsymbol{n}$$

where \boldsymbol{n} is a unit vector that can point to any direction.

- (a) Calculate the inner product between two p orbitals $\langle \psi_{n_2}^p | \psi_{n_1}^p \rangle$.
- (b) Use ψ^s , ψ^p_x , and ψ^p_y to construct three sp mixed orbitals that point to three directions n_1 , n_2 , and n_3 in the *x-y* plane. The angles between n_1 , n_2 , and n_3 are all 120°. Note that the three sp mixed orbitals are described by three orthonormal wave functions.
- 2. (40 pts) Beads of mass m are connected by springs of length a = 1 and form a triangular lattice (see the figure below).

The spring constants of the springs are all given by C.

- (a) Find the fundamental translation vectors (a_1, a_2) of the triangular lattice. Find the fundamental translation vectors (b_1, b_2) of the reciprocal lattice. We may choose the Wigner-Seitz unit cell of the reciprocal lattice as the Brillouin zone. Draw such a Brillouin zone.
- (b) The total potential energy of the deformed lattice is given by

$$U_{\rm tot} = \frac{1}{2} \sum_{ij} \vec{u}_i C_{ij} \vec{u}_j$$

where i is the location of a point in the triangular lattice and \vec{u}_i is the displacement of the bead at the location i. Calculate the two by two matrix C_{ij} .

- (c) Calculate the dispersion relation $\omega_{\mathbf{k}}$ of the two branches of sound waves. (Hint: you may want to introduce (k_1, k_2) through $\mathbf{k} = k_1 \frac{\mathbf{b}_1}{2\pi} + k_2 \frac{\mathbf{b}_2}{2\pi}$ and express $\omega_{\mathbf{k}}$ as a function of k_1 and k_2 .)
- (d) Plot the dispersion relations along the following lines $\mathbf{k} = 0 \rightarrow \frac{1}{2}\mathbf{b}_1 \rightarrow \frac{1}{2}(\mathbf{b}_1 + \mathbf{b}_2) \rightarrow 0$. Mark those lines in your Brillouin zone. (This is also the good time to plot the dispersion relation along several directions that are related by symmetry to check your result.)