$\begin{array}{l} \textbf{8.251-Homework \ 6}\\ \textbf{Corrected \ 3/17/07^1} \end{array}$

B. Zwiebach

Due Tuesday, March 20.

1. (15 points) Three-dimensional motion of closed strings and cusps.

We considered in lecture the closed string motion described by

$$\vec{X}(t,\sigma) = \frac{1}{2} \left(\vec{F}(u) + \vec{G}(v) \right), \quad \text{with} \quad u = ct + \sigma, \ v = ct - \sigma.$$
(1)

Here $\sigma \sim \sigma + \sigma_1$, where $\sigma_1 = E/T_0$ and E is the energy of the string. We showed that

$$\vec{F}'(u)|^2 = |\vec{G}'(v)|^2 = 1,$$
(2)

$$\vec{F}'(u+\sigma_1) = \vec{F}'(u)$$
 and $\vec{G}'(v+\sigma_1) = \vec{G}'(v)$. (3)

Equations (2) and (3) imply that $\vec{F}'(u)$ and $\vec{G}'(v)$ can be described as two independent closed parameterized paths on the surface of a unit two-sphere. We assumed that the paths intersect at $u = u_0$ and $v = v_0$

$$\vec{F}'(u_0) = \vec{G}'(v_0) \,. \tag{4}$$

The quantities u_0 and v_0 define a time t_0 and position σ_0 . We showed that at $t = t_0$, the point $\sigma = \sigma_0$ on the string moves with the speed of light in the direction of $\vec{F}'(u_0)$.

(a) We choose a coordinate system so that the cusp generated by (4) appears at the origin: $\vec{F}(u_0) + \vec{G}(v_0) = \vec{0}$. Use the Taylor expansions of $\vec{F}(u)$ and $\vec{G}(v)$ around u_0 and v_0 to prove that for σ near σ_0 ,

$$\vec{X}(t_0,\sigma) = \vec{T} (\sigma - \sigma_0)^2 + \vec{R} (\sigma - \sigma_0)^3 + \dots,$$
(5)

where the vectors \vec{T} and \vec{R} are given by

$$\vec{T} = \frac{1}{4} \left(\vec{F}''(u_0) + \vec{G}''(v_0) \right), \quad \vec{R} = \frac{1}{12} \left(\vec{F}'''(u_0) - \vec{G}'''(v_0) \right).$$
(6)

Assume that the intersection of the paths on the two-sphere indicated in equation (4) is regular: the paths are not parallel at the intersection and neither $\vec{F}''(u_0)$ nor $\vec{G}''(v_0)$ vanishes. Explain why \vec{T} is non-zero and orthogonal to $\vec{F}'(u_0)$. In general \vec{R} does not vanish, but it may under special conditions.

(b) One can use equation (5) to show that the cusp opens up along the direction of the vector \vec{T} and is contained in the plane spanned by \vec{T} and \vec{R} . For this, align the positive y axis along \vec{T} , position the x axis so that \vec{R} lies on the (x, y) plane, and demonstrate that near the cusp $y \sim x^{2/3}$. In what plane does the velocity of the cusp lie?

Spring 2007

¹Problem 1(d) was revised.

(c) Consider the functions $\vec{F}(u)$ and $\vec{G}(v)$ given by

$$\vec{F}(u) = \frac{\sigma_1}{2\pi} \left(\sin \frac{2\pi u}{\sigma_1} \,, -\cos \frac{2\pi u}{\sigma_1} \,, \, 0 \right) \,, \quad \vec{G}(v) = \frac{\sigma_1}{4\pi} \left(\sin \frac{4\pi v}{\sigma_1} \,, 0 \,, -\cos \frac{4\pi v}{\sigma_1} \,\right) \,. \tag{7}$$

Verify that the conditions in (2) and (3) are satisfied. For the cusp at $t = \sigma = 0$ give its direction, the plane it lies on, and its velocity. Draw a sketch.

(d) Show that the motion of the closed string has period $\sigma_1/(4c)$. How many cusps are formed during a period? (Hint: recall that you found in Problem (7.3) an example of a situation in which the string returns to its original position in less time than the function $\vec{F}(ct + \sigma)$ takes to repeat itself. In fact, any free closed string, when viewed in its rest frame, will return to its original position in time $\sigma_1/(2c)$, where σ_1 is the period of the functions $\vec{F'}$ and $\vec{G'}$.)

2. (5 points) Gravitational lensing by a cosmic string

A cosmic string produces a conical deficit angle Δ . An observer is a distance d from the cosmic string and a quasar is a distance ℓ from the cosmic string. The position of the quasar is such that the observer sees a double image, separated by an angle $\delta\phi$. Calculate $\delta\phi$ in terms of Δ , d, and ℓ , in the approximation that Δ is small.

- 3. (10 points) Problem 7.5.
- 4. (5 points) Problem 8.1.
- 5. (10 points) Problem 8.3.
- 6. (10 points) Problem 8.5.

I recommend Problem 8.2 as good practice to reinforce concepts.