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Problem Set 5 

Due: Friday, March 17. This problem set is not to be turned in due to the upcoming quiz; 
however, you are responsible for the material covered by the problems. 

Reading: Chapters 11 and 12 in Zeilik & Gregory. 

Reminder: Quiz #1 will be given on Monday, March 13 during the regular lecture period. 
The quiz will cover all lecture material up through the lecture on Friday, March 10, and the 
relevant parts of Chapters 1, 8, 9, and 11 in Zeilik & Gregory. You may prepare and use a 
single page of notes during the quiz. Be sure to bring a calculator to the exam. 

Problem 1 

“Derivation of the StefanBoltzmann and Wien Radiation Laws” 

The Planck blackbody radiation law (1901) describes the electromagnetic power emitted 
per unit area per unit wavelength from the surface of a “black body” (a surface that absorbs 
all radiation incident upon it) at a temperature T . There are numerous ways to derive this 
fundamental radiation law from first principles using statistical and quantum physics. We 
will not attempt the derivation here; we merely cite the result for the Planck spectrum: 

2πc2h 
B(λ) = 

λ5[ehc/λkT − 1] 

where h is Planck’s constant (6.625 × 10−27 ergs sec), c is the speed of light, k is Boltzmann’s 
constant (1.380 × 10−16 ergs deg−1), λ is the wavelength of the radiation, and T is the 
temperature in degrees K. The dimensions of B(λ) are “energy per unit area, per unit time, 
per unit wavelength interval”. Very nice plots of the Planck radiation law as a function of 
frequency (instead of λ) are presented in Figure 814 (page 172) of Zeilik & Gregory. 

A. Derive the StefanBoltzmann law (F = σT 4) which relates the total power per unit area 
emitted by a black body, F , to its temperature, T (see equation 840 in Z&G). 

Suggested procedure: 

i. Integrate the Planck function over all wavelengths. To do this, first extract the constants 
from the integral in such a way that only a function of the dimensionless variable x = λkT /hc 
remains inside the integral. The remaining dimensionless integral: 

∞ dx ∞ y3dy 
= 

x5[e1/x − 1] [ey − 1]0 0 

can be done analytically and yields: π4/15 (you do not need to prove this). 
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ii. Find the constant σ in terms of fundamental constants of Nature. 

iii. Evaluate the numerical value of σ (in either cgs or mks units) and compare to the known 
answer given in the book. 

B. Derive the Wien displacement law which relates the wavelength of the radiation at the 
peak of the Planck function to the temperature T (λmaxT = 0.29 cm K; see equation 839 in 
Z&G). 

i. Find the maximum of B(λ) by differentiating with respect to λ and setting the result 
equal to zero. 

ii. If you are on the right track, you will end up with a nonlinear equation of the form: 
5(1 − e−y ) − y = 0. Solve this with your calculator using a trial and error method, or write a 
program to solve by Newton’s method, or use the “solve” button on some calculators. (The 
answer is y � 4.965). If you do not want to spend time solving this equation, simply verify 
that the answer is correct. 

iii. Find the relation between the temperature and the wavelength at the peak of the black 
body spectrum. 

iv. Prove that measurements of a given blackbody at an arbitrary (unknown) distance at 
two different wavelengths, e.g., B(λ1) and B(λ2) are sufficient to uniquely determine the 
temperature, T , of that blackbody. 

v. The surface of the Sun acts like a fairly good black body (even though it hardly looks 
black). If the surface temperature of the Sun is 5800K, find the peak wavelength of the 
black body radiation. 

Problem 2


“Short Answer Questions on Magnitudes”


Zeilik & Gregory problems 3, 4, 8 a&c, and 10, Chapter 11, page 233.


Problem 3 

“Moving Cluster Method  the Hyades Cluster” 

Below is a Table of measurements of 8 representative stars in the Hyades cluster. The 
nine columns in the Table are: the star number, right ascension (α), declination (δ), stellar 
magnitude, proper motion in the directions of right ascension and declination (µα cos δ and 
µδ ), respectively, the total proper motion (µ), the angle from the radiant (θ), and the radial 
velocity (vr ). The units of proper motion are 0.001 seconds of arc (along a great circle) per 
year. Find the mean distance to the Hyades cluster and its mean space velocity. 

Suggested procedure: 

a. Start with the plot of the Hyades cluster given below. The positions of the stars in 
the table as well as many others are plotted with a small filled circle. Also plotted for 
each star is a small vector that represents its proper motion. The direction is given by the 
two components of proper motion (µα cos δ and µδ ) and its length is proportional to the 
magnitude of the proper motion (µ). 
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Project enough of the vectors to find an approximate common intersection point (the 
convergence point or radiant). Find the coordinates (α and δ) of the “center of gravity” of 
the intersecting lines. 

b. For stars in the Table numbered 6, 104, and 129 verify that the angular distance to the 
radiant θ is close to the value given in column 8 of the Table. An approximate expression 
for the angular separation of two points on a sphere is Δθ � (Δδ2 + Δα2 cos2 δ)1/2 . Also 
note that one hour of right ascension is equal to 15 degrees in angle (24 hours equals 360 
degrees). For this problem, an accuracy of 1 degree is adequate. 

c. Find the distance from the Earth to any three stars in the Table using the expression 

vr tan θ 
d = pc,

4.74µ 

where vr is in km/s, µ is the total proper motion in seconds of arc per year, and θ is the 
angle from the star to the radiant. (Use the values given in the Table for vr , µ, andθ.) 

d. Find the space velocity of the three stars in part (c). 

e. From the results of parts (c) and (d) find an average distance to the cluster and its average 
space velocity. 

(Read section 19.3, pages 383385 in Z&G for further details.) 

Table: Some data about Hyades stars 

Problem 4 

“Binary Orbit 1” 

Zeilik & Gregory Problem 3, Chapter 12, page 249. 

(Note: An orbital inclination of zero degrees indicates that we are viewing the binary system 
directly along its angular momentum axis or, in other words, the orbital plane lies in the 
plane of the sky.) 

Problem 5 

“Binary Orbit 2” 

Zeilik & Gregory Problem 4, Chapter 12, page 249. 
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Problem 6 

“Binary Orbit 3” 

Zeilik & Gregory Problem 5, Chapter 12, page 249. 

Problem 7 

“Binary Orbit 4” 

Zeilik & Gregory Problem 8, Chapter 12, page 249. 
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