Assignment #5

due 11:04 am Friday 2006 March 17th

- Reading: Hansen and Kawaler (Hayden reserve only): §§3.1-3.5 (eqn 3.67) on quantum statistics, distribution functions and equations of state and §§7.1-7.2 (eqn 7.45) on polytropes.
- 1. Solve the Lane-Emden equation for an n=3/2 polytrope using Runge-Kutta integration from $\xi = 0$ to the point where the density first reaches zero. Plot ϕ^n (which is proportional to density) and $-4\pi\xi^2 \frac{d\phi}{d\xi}$ (which is proportional to the mass interior to ξ) as a function of ξ .
- 2. In class we derived an expression for the gravitational binding energy, Ω , of a polytrope of index n. Use the virial theorem to derive and expression for the total internal energy, U, of such a polytrope. Define the average temperature, \overline{T} , such that $U = \frac{M}{\mu m_p} \frac{3}{2} k \overline{T}$. Compute the ratio of the central temperature T_c to this average temperature.
- 3. (Clayton's problem 1-22) A certain stellar atmosphere with a pressure of 1000 dynes/cm² consists entirely of hydrogen (molecular and atomic). By ignoring statistical weights, i.e. setting the partition functions equal to unity, find the temperature at which the H₂ molecules are 50 percent dissociated into atomic hydrogen. The binding energy of the H₂ molecule is 4.48 ev. Ignore ionization. Does your result justify this approximation?
- 4. Consider (for the sake of argument) an infinitely long cylindrically symmetric self gravitating star in hydrostatic equilibrium which obeys a polytropic equation of state, $P = K\rho^{1+\frac{1}{n}}$. Let $\mu(r)$ be the mass *per unit length* interior to *r*, i.e. $\mu(r) = \int_{0}^{r} \rho(r) 2\pi r dr$.
 - a) Derive the cylindrical analog of the Lane-Emden equation for such a star. (Hint: Gauss' Law applied to an infinitely long cylindrical mass gives a force $-2G\mu(r)/r$. Use this in the equation of hydrostatic equilibrium). What is the scale length (which you might call b to distinguish it from the scale length a in the spherical case) used to make the equation dimensionless.
 - b) Derive an expression for $\mu(r)$ interior to the first zero of the solution, ξ_1 , in terms of the central density (variously represented by λ and ρ_c) and the scale length b.
 - c) For spherical stars of polytropic index n = 3 we found a unique mass which was independent of central density and depended only on the constant K. For a relativistic degenerate electron gas this gave us the Chandrasaekhar mass. For what polytropic index is $\mu(r)$ independent of central density?
- (5) The (log T, log ρ) plane can be divided into four regions in which radiation pressure, non-degenerate gas pressure, degenerate electron pressure and relativistic degenerate electron pressure dominate the total pressure. These four regions are separated by three straight lines.
 - a) By equating the expressions for pressure in adjacent regions, derive an equation for each of these straight lines.
 - b) draw them on a plot of the (log ρ , log P) plane. In computing the mean molec-

ular weight, take X = 0.70, Y = 0.28 and Z = 0.02, where X is the fraction by mass of hydrogen, Y is mass fraction of helium, and Z is the "heavy element" abundance (everything else) for which the mean molecular weight, $\mu \approx 2$.