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PROBLEM 1: THE MAGNETIC MONOPOLE PROBLEM (20 points) 

In Lecture Notes 9, we learned that Grand Unified Theories (GUTs) imply 
the existence of magnetic monopoles, which form as “topological defects” (topolog­
ically stable knots) in the configuration of the Higgs fields that are responsible for 
breaking the grand unified symmetry to the SU(3)×SU(2)×U(1) symmetry of the 
standard model of particle physics. At very high temperatures the Higgs fields os­
cillate wildly, so the fields average to zero. As the temperature T falls, however, the 
system undergoes a phase transition. The phase transition occurs at a temperature 
Tc, called the critical temperature, where kTc ≈ 1016 GeV. At this phase transition 
the Higgs fields acquire nonzero expectation values, and the grand unified symme­
try is thereby spontaneously broken. The monopoles are twists in the Higgs field 
expectation values, so the monopoles form at the phase transition. Each monopole 

2is expected to have a mass MM c ≈ 1018 GeV, where the subscript “M” stands 
for “monopole.” According to an estimate first proposed by T.W.B. Kibble, the 
number density nM of monopoles formed at the phase transition is of order 

nM ∼ 1/ξ3 , (P1.1) 

where ξ is the correlation length of the field, defined roughly as the maximum 
distance over which the field at one point in space is correlated with the field 
at another point in space. The correlation length is certainly no larger than the 
physical horizon distance at the time of the phase transition, and it is believed 
to typically be comparable to this upper limit. Note that an upper limit on ξ is a 
lower limit on nM — there must be at least of order one monopole per horizon-sized 
volume. 

Assume that the particles of the grand unified theory form a thermal gas of 
blackbody radiation, as described by Eq. (6.48) of Lecture Notes 6, 

π2 (kT )4 

u = g ,
30 (h̄c)3 

with gGUT ∼ 200. Further assume that the universe is flat and radiation-dominated 
from its beginning to the time of the GUT phase transition, tGUT. 
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For each of the following questions, first write the answer in terms of physical 
constants and the parameters Tc, MM , and  gGUT, and then evaluate the answers 
numerically. 

(a)	 (5 points) Under the assumptions described above, at what time tGUT does 
the phase transition occur? Express your answer first in terms of symbols, and 
then evaluate it in seconds. 

(b)	 (5 points) Using Eq. (P1.1) and setting ξ equal to the horizon distance, estimate 
the number density nM of magnetic monopoles just after the phase transition. 

(c)	 (5 points) Calculate the ratio nM /nγ of the number of monopoles to the number 
of photons immediately after the phase transition. Refer to Lecture Notes 6 to 
remind yourself about the number density of photons. 

(d)	 (5 points) For topological reasons monopoles cannot disappear, but they 
form with an equal number of monopoles and antimonopoles, where the an­
timonopoles correspond to twists in the Higgs field in the opposite sense. 
Monopoles and antimonopoles can annihilate each other, but estimates of the 
rate for this process show that it is negligible. Thus, in the context of the 
conventional (non-inflationary) hot big bang model, the ratio of monopoles to 
photons would be about the same today as it was just after the phase transi­
tion. Use this assumption to estimate the contribution that these monopoles 
would make to the value of Ω today. 

PROBLEM 2: EXPONENTIAL EXPANSION OF THE INFLATION­
ARY UNIVERSE (15 points) 

Recall that the evolution of a Robertson-Walker universe is described by the 
equation  

ȧ
 2 8π kc2 

= Gρ − . 
a 3 a2 

Suppose that the mass density ρ is given by the constant mass density ρf of the 
false vacuum. For the case k = 0, the growing solution is given simply by 

χt a(t) = const  e , 

where  
8π 

χ = Gρf3 

and const is an arbitrary constant. Find the growing solution to this equation for 
an arbitrary value of k. Be sure to consider both possibilities for the sign of k. You  
may find the following integrals useful:

 
dx √ = sinh−1 x 
1 +  x2 



 
 

 

� � �� 
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dx √ = sin−1 x .  
1 − x2 

√ 
dx 

= cosh−1 x .  
x2 − 1 

Show that for large times one has 

χt a(t) ∝ e 

for all choices of k. 

PROBLEM 3: THE HORIZON DISTANCE FOR THE PRESENT UNI­
VERSE (25 points) 

We have not discussed horizon distances since the beginning of Lecture Notes 
4, when we found that 

t c
Rp,horizon(t) =  a(t) dt' .	 (P3.1) 

a(t')0 

This formula was derived before we discussed curved spacetimes, but the formula 
is valid for any Robertson-Walker universe, whether it is open, closed, or flat. 

(a) Show that the formula above is valid for closed universes.	 Hint: write the 
closed universe metric as it was written in Eq. (7.27): 

ds2 = −c 2 dt2 + ã 2(t) dψ2 + sin2 ψ dθ2 + sin2 θ dφ2 , 

where
 
a(t)
 

ã(t) ≡ √ 
k
 

and ψ is related to the usual Robertson-Walker coordinate r by
 
√ 

sin ψ ≡ k r  .  

Use the fact that the physical speed of light is c, or equivalently the fact that 
ds2 = 0 for any segment of the light ray’s trajectory. 

(b) The evaluation of the formula depends of course on the form of the function 
a(t), which is governed by the Friedmann equations. For the Planck 2013 best 
fit to the parameters, 

−1H0 = 67.3 km  · s · Mpc−1 

Ωm,0 = 0.315 

Ωvac,0 = 0.685 

Ωr,0 = 9.2 × 10−5 (Tγ,0 = 2.725 K) , 

∫
∫

∫
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find the current horizon distance, expressed both in light-years and in Mpc. 
Hint: find an integral expression for the horizon distance, similar to Eq. (7.23a) 
for the age of the universe. Then do the integral numerically. 

Note that the model for which you are calculating does not explicitly include 
inflation. If it did, the horizon distance would turn out to be vastly larger. 
By ignoring the inflationary era in calculating the integral of Eq. (P3.1), we 
are finding an effective horizon distance, defined as the present distance of the 
most distant objects that we can in principle observe by using only photons that 
have left their sources after the end of inflation. Photons that left their sources 
earlier than the end of inflation have undergone incredibly large redshifts, so it 
is reasonable to consider them to be completely unobservable in practice. 

PROBLEM 4: THE INFLATIONARY SOLUTION TO THE HORI­
ZON/HOMOGENEITY PROBLEM 

(This problem is not required, but can be done for 20 points extra credit.) 

In this problem we will calculate how much inflation is needed to explain the 
observed homogeneity of the universe. To make the calculation well-defined, we will 
adopt a simple description of how inflation works. Although we are trying to explain 
the homogeneity of the universe, to make the problem tractable we will need to 
assume that from the onset of inflation, at a time we call ti, the universe was already 
very nearly homogeneous, so that we can approximate its evolution using simple 
equations. We will in fact assume that from time ti onward the evolution equations 
can be approximated by those of a homogeneous, isotropic, and flat universe. We 
will assume that inflation is driven by a false vacuum with a fixed mass density ρf , 
which we will describe by relating it to a parameter Ef by 

E4 
fρf ≡ , (P4.1)

h3 5¯ c

where Ef has the units of energy. To discuss inflation at the energy scale of grand 
unified theories, we will write Ef as 

Ef ≡ E16 × 1016 GeV , (P4.2) 

where E16 is a dimensionless number that will we will assume is of order 1. The 
Hubble parameter during inflation is then dictated by the Friedmann equation, 

8π 
Hi 

2 = Gρf . (P4.3)
3 

While we are assuming enough homogenity to proceed with the calculation, we 
still want to assume that the high precision homogeneity of the observed universe 
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(like the 1 part in 105 uniformity of the CMB) was not part of the initial conditions, 
but must be explained in terms of the evolution of the universe. The homogeneity is 
created first on short distance scales, and the length scale of homogeneity, denoted 
by rh(t), increases with time. At the onset of inflation we assume that normal 
thermal equilibrium processes have already smoothed the universe on scales smaller 
than the Hubble length, so we write 

rh(ti) ≈ βcH−1 , (P4.4)i 

where β is a dimensionless constant with β <∼ 1. 

We assume that inflation continues long enough so that the universe expands 
by a factor Z, where we will be trying to calculate the minimum value of Z. We  
will assume for simplicity that inflation ends suddenly, at time te. Reheating is 
then assumed to occur instantly, with the mass density ρf of the false vacuum being 
converted to thermal equilibrium radiation, described as in Lecture Notes 6 by 

π2 (kTRH)4 

ρRH = gRH , (P4.5)
30 h̄3 c5 

where gRH reflects the total number of particles that are effectively massless at the 
energy scale of reheating. For a grand unified theory one might take gRH ≈ 300, 
but fortunately the value of this highly uncertain number will not have much effect 
on the answer. The length scale of homogeneity is stretched by inflation to 

rh(te) =  Zrh(ti) , (P4.6) 
and we will assume that rh(t) continues to evolve only by being stretched with the 
scale factor. The length scale today is then given by 

a(t0) 
rh(t0) =  Zrh(ti) . (P4.7) 

a(te) 
3To evaluate a(t0)/a(te), you can use the conservation of entropy, a s = constant, 

where s is the entropy density, which is very accurate from the end of inflation to 
the present. For the current entropy density, include photons and neutrinos, taking 
into account the temperature difference Tν /Tγ = (4/11)1/3 . 

Problem: Find the minimum value of Z such that 
rh(t0) > Rp,horizon(t0) , (P4.8) 

using the value of Rp,horizon(t0) calculated in Problem 3. (If you did not do 
Problem 3, you could use instead 3ct0, the answer for a flat matter-dominated 
universe, with t0 ≈ 13.8 billion years.) Assume the parameters of the Planck 
2013 best fit described in Problem 3, and write your answer for Zmin as a 
function of E16, gRH, and  β. Since inflation is an exponential process, it is useful 
to also express the numerical answer in terms of Nmin ≡ ln Zmin, which  is  the  
minimum number of e-foldings of inflation. (An “e-folding” refers to a period 

H∆t 1of one Hubble time, ∆t = H−1, so the scale factor expands by e = e = e.) 

Total points for Problem Set 10: 65, plus an optional 20 points of extra 
credit. 
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