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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 
Physics Department
 

Physics 8.286: The Early Universe September 24, 2013 
Prof. Alan Guth 

PROBLEM SET 3 

QUIZ DATES FOR THE TERM: 
Quiz 1: Thursday, October 3, 2013 
Quiz 2: Thursday, November 7, 2013 
Quiz 3: Thursday, December 5, 2013 

DUE DATE: Monday, September 30, 2013, 5:00 pm. 

READING ASSIGNMENT: Steven Weinberg, The First Three Minutes, Chap­
ter 3. 

FIRST QUIZ: The first of three quizzes for the term will be given on Thursday, 
October 3, 2013. 

PROBLEM 1: A CYLINDRICAL UNIVERSE (25 points) 

The following problem originated on Quiz 2 of 1994, where it counted 30 points. 

The lecture notes showed a construction of a Newtonian model of the universe 
that was based on a uniform, expanding, sphere of matter. In this problem we will 
construct a model of a cylindrical universe, one which is expanding in the x and y 
directions but which has no motion in the z direction. Instead of a sphere, we will 
describe an infinitely long cylinder of radius Rmax,i, with an axis coinciding with 
the z-axis of the coordinate system: 

We will use cylindrical coordinates, so 

2r = x2 + y
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and 
rr

rr = xı̂ + yĵ ; r̂ = , 
r 

where ı̂, ĵ, and k̂ are the usual unit vectors along the x, y, and z axes. We will 
assume that at the initial time ti, the initial density of the cylinder is ρi, and the 
initial velocity of a particle at position rr is given by the Hubble relation 

rvi = Hirr . 

(a)	 (5 points) By using Gauss’ law of gravity, it is possible to show that the grav­
itational acceleration at any point is given by 

Aµ
rg = − r ,ˆ

r 

where A is a constant and µ is the total mass per length contained within the 
radius r. Evaluate the constant A. 

(b)	 (5 points) As in the lecture notes, we let r(ri, t) denote the trajectory of a 
particle that starts at radius ri at the initial time ti. Find an expression for 
r̈(ri, t), expressing the result in terms of r, ri, ρi, and any relevant constants. 
(Here an overdot denotes a time derivative.) 

(c)	 (5 points) Defining 
r(ri, t) 

u(ri, t) ≡ , 
ri 

show that u(ri, t) is in fact independent of ri. This implies that the cylinder 
will undergo uniform expansion, just as the sphere did in the case discussed in 
the lecture notes. As before, we define the scale factor a(t) ≡ u(ri, t). 

(d)	 (5 points) Express the mass density ρ(t) in terms of the initial mass density ρi 

and the scale factor a(t). Use this expression to obtain an expression for ä in 
terms of a, ρ, and any relevant constants. 

(e)	 (5 points) Find an expression for a conserved quantity of the form 

1 
E = ȧ2 + V (a) .

2 

What is V (a)? Will this universe expand forever, or will it collapse?
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PROBLEM 2: A FLAT UNIVERSE WITH UNUSUAL TIME EVOLU­
TION (10 points) 

Consider a flat universe which is filled with some peculiar form of matter, so 
that the Robertson–Walker scale factor behaves as 

a(t) = bt3/4 , 

where b is a constant. 

(a)	 (5 points) For this universe, find the value of the Hubble expansion rate H(t). 

(b)	 (5 points) What is the mass density of the universe, ρ(t)? (In answering this 
question, you will need to know that the equation for ȧ/a in Lecture Notes 3, ⎧ ⎪⎩


ȧ

⎫ ⎪⎭
 

2 8π kc2 

= Gρ − ,
3 a2a
 

holds for all forms of matter, while the equation for ä,
 

4π
 
ä = − Gρ(t)a , 

3 

requires modification if the matter has a significant pressure. The ä equation 
is therefore not applicable to this problem.) 

PROBLEM 3: ENERGY AND THE FRIEDMANN EQUATION (30 
points) 

The Friedmann equation, ⎧ ⎪⎩

ȧ

⎫ ⎪⎭
 

2 8π kc2 

= Gρ − ,
3 a2 

(1)
 
a
 

was derived in Lecture Notes 3 as a first integral of the equations of motion. The 
equation was first derived in a different form, 

1 4π Gρi
E = ȧ2 − = constant,	 (2) 

2 3 a 

where k = −2E/c2 . In this form the equation looks more like a conservation of 
energy relation, although the constant E does not have the dimensions of energy. 
There are two ways, however, in which the quantity E can be connected to the 
conservation of energy. It is related the energy of a test particle that moves with the 
Hubble expansion, and it is also related to the total energy of the entire expanding 
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sphere of radius Rmax, which was discussed in Lecture Notes 3 as a method of 
deriving the Friedmann equations. In this problem you will derive these relations. 

First, to see the relation with the energy of a test particle moving with the 
Hubble expansion, define a physical energy Ephys by 

2Ephys ≡ mri E ,	 (3) 

where m is the mass of the test particle and ri is its initial radius. Note that the 
gravitational force on this particle is given by 

GmM(ri)
Fr = − r̂ = −r	 (4)DVeff (r) ,2r

where M(ri) is the total mass initially contained within a radius ri of the origin, 
r is the present distance of the test particle from the origin, and the “effective” 
potential energy Veff (r) is given by 

GmM(ri)
Veff (r) = − .	 (5) 

r 

The motivation for calling this quantity the “effective” potential energy will be 
explained below. 

(a)	 (10 points) Show that Ephys is equal to the “effective” energy of the test particle, 
defined by 

1 
Eeff	 = mv 2 + Veff (r) . (6)

2 

We understand that Eeff is conserved because it is the energy in an analogue problem 
in which the test particle moves in the gravitational field of a point particle of mass 
M(ri), located at the origin, with potential energy function Veff (r). In this analogue 
problem the force on the test particle is exactly the same as in the real problem, 
but in the analogue problem the energy of the test particle is conserved. 

We call (6) the “effective” energy because it is really the energy of the analogue 
problem, and not the real problem. The true potential energy V (r, t) of the test 
particle is defined to be the amount of work we must supply to move the particle 
to its present location from some fixed reference point, which we might take to be 
r = ∞. We will not bother to write V (r, t) explicitly, since we will not need it, but we 
point out that it depends on the time t and on Rmax, and when differentiated gives 
the correct gravitational force at any radius. By contrast, Veff (r) gives the correct 
force only at the radius of the test particle, r = a(t)ri. The true potential energy 
function V (r, t) gives no conservation law, since it is explicitly time-dependent, 
which is why the quantity Veff (r) is useful. 
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To relate E to the total energy of the expanding sphere, we need to integrate over 
the sphere to determine its total energy. These integrals are most easily carried out 
by dividing the sphere into shells of radius r, and thickness dr, so that each shell 
has a volume 

dV = 4πr2 dr .	 (7) 

(b) (10 points) Show that the total kinetic energy K of the sphere is given by  
1 

K = cK MR2 ȧ2(t) ,	 (8)max,i 2 

where cK is a numerical constant, M is the total mass of the sphere, and Rmax,i 
is the initial radius of the sphere. Evaluate the numerical constant cK . 

(c) (10 points) Show that the total potential energy of the sphere can similarly be 
written as	   


4π ρi

U = cU MR2 − G .	 (9)max,i 3 a

(Suggestion: calculate the total energy needed to assemble the sphere by bring­
ing in one shell of mass at a time from infinity.) Show that cU = cK , so that 
the total energy of the sphere is given by 

Etotal = cK MR2 .	 (10)max,i E 

PROBLEM 4: A POSSIBLE MODIFICATION OF NEWTON’S LAW 
OF GRAVITY (20 points) 

READ THIS: This problem was Problem 2 of Quiz 1 of 2011, and the solution is 
posted as http://web.mit.edu/8.286/www/quiz11/ecqs1-1.pdf. Unlike the situation 
with other problems, in this case you are encouraged to look at these solutions and 
benefit from them. When you write your solution, you can even copy it verbatim 
from these solutions if you wish, although obviously you will learn more if you think 
about the solution and write your own version. 

In Lecture Notes 3 we developed a Newtonian model of cosmology, by consid­
ering a uniform sphere of mass, centered at the origin, with initial mass density ρi 
and an initial pattern of velocities corresponding to Hubble expansion: rvi = Hirr: 

http://web.mit.edu/8.286/www/quiz11/ecqs1-1.pdf
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We denoted the radius at time t of a particle which started at radius ri by the 
function r(ri, t). Assuming Newton’s law of gravity, we concluded that each particle 
would experience an acceleration given by 

GM(ri) 
rg = − r , ˆ

r2(ri, t) 

where M(ri) denotes the total mass contained initially in the region r < ri, given 
by 

4π 3M(ri) = ri ρi .3 

Suppose that the law of gravity is modified to contain a new, repulsive term, 
producing an acceleration which grows as the nth power of the distance, with a 
strength that is independent of the mass. That is, suppose rg is given by 

GM(ri) 
rg = − r̂ + γrn(ri, t) r̂ , 

r2(ri, t) 

where γ is a constant. The function r(ri, t) then obeys the differential equation 

GM(ri) 
r̈ = − + γrn(ri, t) . 

r2(ri, t) 

(a)	 (4 points) As done in the lecture notes, we define 

u(ri, t) ≡ r(ri, t)/ri . 

Write the differential equation obeyed by u. (Hint: be sure that u is the only 
time-dependent quantity in your equation; r, ρ, etc. must be rewritten in terms 
of u, ρi, etc.) 

(b)	 (4 points) For what value of the power n is the differential equation found in 
part (a) independent of ri? 

(c)	 (4 points) Write the initial conditions for u which, when combined with the 
differential equation found in (a), uniquely determine the function u. 

(d)	 (8 points) If all is going well, then you have learned that for a certain value of 
n, the function u(ri, t) will in fact not depend on ri, so we can define 

a(t) ≡ u(ri, t) . 

Show, for this value of n, that the differential equation for a can be integrated 
once to obtain an equation related to the conservation of energy. The desired 
equation should include terms depending on a and ȧ, but not ä or any higher 
derivatives. 

Total points for Problem Set 3: 85. 
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