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PROBLEM SET 9 

DUE DATE: Monday, December 2, 2013, at 5:00 pm. This is the last problem set 
before Quiz 3. There will also be a Problem Set 10, to be due Tuesday, December 
10, 2013. 

READING ASSIGNMENT: Barbara Ryden, Introduction to Cosmology, Chap­
ter 11 (Inflation and the Very Early Universe.) Also read Inflation and the New 
Era of High-Precision Cosmology, by Alan Guth, written for the MIT Physics 
Department annual newsletter, 2002. It is available at 

http://web.mit.edu/physics/news/physicsatmit/physicsatmit_02_cosmology.pdf 

The data quoted in the article about the nonuniformities of the cosmic mi­
crowave background radiation has since been superceded by much better data, 
but the conclusions have not changed. They have only gotten stronger. 

UPCOMING QUIZ: Thursday, December 5, 2013. 

PROBLEMS 6 AND 7: These extra credit problems can be handed in anytime 
before Friday, December 9, and so the solutions will not be posted until that 
time. 

PROBLEM 1: BIG BANG NUCLEOSYNTHESIS (20 points) 

The calculations of big bang nucleosynthesis depend on a large number of 
measured parameters. Below you are asked to qualitatively describe the effects of 
changing some of these parameters. Include a sentence or two to explain each of 
your answers. (These topics have not been discussed in class, but you are expected 
to be able to answer the questions on the basis of your readings in Weinberg’s and 
Ryden’s books.) 

(a)	 (5 points) Suppose an extra neutrino species is added to the calculation. Would 
the predicted helium abundance go up or down? 

(b)	 (5 points) Suppose the weak interactions were stronger than they actually are, 
so that the thermal equilibrium distribution between neutrons and protons 
were maintained until kT ≈ 0.25 MeV. Would the predicted helium abundance 
be larger or smaller than in the standard model? 

(c)	 (5 points) Suppose the proton-neutron mass difference were larger than the 
actual value of 1.29 MeV/c2 . Would the predicted helium abundance be larger 
or smaller than in the standard calculation? 

http://web.mit.edu/physics/news/physicsatmit/physicsatmit_02_cosmology.pdf
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(d)	 (5 points) The standard theory of big bang nucleosynthesis assumes that the 
matter in the universe was distributed homogeneously during the era of nu­
cleosynthesis, but the alternative possibility of inhomogeneous big-bang nucle­
osynthesis has been discussed since the 1980s. Inhomogeneous nucleosynthesis 
hinges on the hypothesis that baryons became clumped during a phase transi­
tion at t ≈ 10−6 second, when the hot quark soup converted to a gas of mainly 
protons, neutrons, and in the early stages, pions. The baryons would then 
be concentrated in small nuggets, with a comparatively low density outside of 
these nuggets. After the phase transition but before nucleosynthesis, the neu­
trons would have the opportunity to diffuse away from these nuggets, becoming 
more or less uniformly distributed in space. The protons, however, since they 
are charged, interact electromagnetically with the plasma that fills the uni­
verse, and therefore have a much shorter mean free path than the neutrons. 
Most of the protons, therefore, remain concentrated in the nuggets. Does this 
scenario result in an increase or a decrease in the expected helium abundance? 

PROBLEM 2: MASS DENSITY OF VACUUM FLUCTUATIONS (25 
points) 

The energy density of vacuum fluctuations has been discussed qualitatively in 
lecture. In this problem we will calculate in detail the energy density associated with 
quantum fluctuations of the electromagnetic field. To keep the problem finite, we 
will not consider all of space at once, but instead we will consider the electromagnetic 
field inside a cube of side L, defined by coordinates 

0 ≤ x ≤ L , 

0 ≤ y ≤ L , 

0 ≤ z ≤ L . 

Our goal, however, will be to compute the energy density in the limit as the size of 
the box is taken to infinity. 

(a)	 (10 points) The electromagnetic waves inside the box can be decomposed into 
a Fourier sum of sinusoidal normal modes. Suppose we consider only modes 
that extend up to a maximum wave number kmax, or equivalently modes that 
extend down to a minimum wavelength λmin, where 

2π 
kmax = . 

λmin 

How many such modes are there? I do not expect an exact answer, but your 
approximations should become arbitrarily accurate when λmin « L. (These 
mode counting techniques are probably familiar to many of you, but in case 
they are not I have attached an extended hint after part (c).) 
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(b)	 (10 points) When the electromagnetic field is described quantum mechanically, 
each normal mode behaves exactly as a harmonic oscillator: if the angular 
frequency of the mode is ω, then the quantized energy levels have energies 
given by   

En = n + 1 h̄ω , 2

where h̄ is Planck’s original constant divided by 2π, and n is an integer. The 
integer n is called the “occupation number,” and is interpreted as the number 
of photons in the specified mode. The minimum energy is not zero, but instead 
is 1

2 ̄hω, which is the energy of the quantum fluctuations of the electromagnetic 
field. Assuming that the mode sum is cut off at λmin equal to the Planck 
length (as defined in the Lecture Notes), what is the total mass density of 
these quantum fluctuations? 

(c)	 (5 points) How does the mass density of the quantum fluctuations of the elec­
tromagnetic field compare with the critical density of our universe? 

Extended Hint: 

The electromagnetic fields inside a closed box can be expanded as the sum of 
modes, each of which has a sinusoidally varying time dependence, but the precise 
form of these modes depends on the nature of the boundary conditions on the walls 
of the box. Physically reasonable boundary conditions, such as total reflection, 
are in fact difficult to use in calculations. However, it is known that in the limit 
of an infinite-sized box, the nature of the boundary conditions will not make any 
difference. We are therefore free to choose the simplest boundary conditions that 
we can imagine, and for this purpose we will choose periodic boundary conditions. 
That is, we will assume that the fields and their normal derivatives on each wall 
are fixed to precisely match the fields and their normal derivatives on the opposite 
wall. 

To begin, we consider a wave in one dimension, moving at the speed of light. 
Such waves are most easily described in terms of complex exponentials. If A(x, t) 
represents the amplitude of the wave, then a sinusoidal wave moving in the positive 
x-direction can be written as   

Beik(x−ct)A(x, t) = Re , 

where B is a complex constant and k is a real constant. Defining ω = c|k|, waves 
in either direction can be written as   

Bei(kx−ωt)A(x, t) = Re	 , 

where the sign of k determines the direction. To be periodic with period L, the 
parameter k must satisfy 

kL = 2πn , 
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where n is an integer. So the spacing between modes is Δk = 2π/L. The density 
of modes dN/dk (i.e., the number of modes per interval of k) is then one divided 
by the spacing, or 1/Δk, so 

dN 
= 

L 
(one dimension) . 

dk 2π 

In three dimensions, a sinusoidal wave can be written as 

k·kx−ωt)A(kx, t) = Re Bei(k , 

where ω = c|kk|, and 

kxL = 2πnx , kyL = 2πny , kz L = 2πnz , 

where nx, ny , and nz are integers. Thus, in three-dimensional kk-space the allowed 
values of kk lie on a cubical lattice, with spacing 2π/L. In counting the modes, one 
should also remember that for photons there is an extra factor of 2 associated with 
the fact that electromagnetic waves have two possible polarizations for each allowed 
value of kk. 

PROBLEM 3: THE HORIZON PROBLEM (20 points) 

The success of the big bang predictions for the abundances of the light elements 
suggests that the universe was already in thermal equilibrium at one second after 
the big bang. At this time, the region which later evolves to become the observed 
universe was many horizon distances across. Try to estimate how many. You may 
assume that the universe is flat. 

PROBLEM 4: THE FLATNESS PROBLEM (20 points) 

Although we now know that Ω0 = 1 to an accuracy of a few percent, let us 
pretend that the value of Ω today is 0.1. It nonetheless follows that at 10−37 second 
after the big bang (about the time of the grand unified theory phase transition), Ω 
must have been extraordinarily close to one. Writing Ω = 1 − δ , estimate the value 
of δ at t = 10−37 sec (using the standard cosmological model). 

[ ]
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PROBLEM 5: THE MAGNETIC MONOPOLE PROBLEM (20 points) 

In Lecture Notes 9, we learned that Grand Unified Theories (GUTs) imply 
the existence of magnetic monopoles, which form as “topological defects” (topolog­
ically stable knots) in the configuration of the Higgs fields that are responsible for 
breaking the grand unified symmetry to the SU(3)×SU(2)×U(1) symmetry of the 
standard model of particle physics. At very high temperatures the Higgs fields os­
cillate wildly, so the fields average to zero. As the temperature T falls, however, the 
system undergoes a phase transition. The phase transition occurs at a temperature 
Tc, called the critical temperature, where kTc ≈ 1016 GeV. At this phase transition 
the Higgs fields acquire nonzero expectation values, and the grand unified symme­
try is thereby spontaneously broken. The monopoles are twists in the Higgs field 
expectation values, so the monopoles form at the phase transition. Each monopole 

2is expected to have a mass MM c ≈ 1018 GeV, where the subscript “M” stands 
for “monopole.” According to an estimate first proposed by T.W.B. Kibble, the 
number density nM of monopoles formed at the phase transition is of order 

nM	 ∼ 1/ξ3 , (P5.1) 

where ξ is the correlation length of the field, defined roughly as the maximum 
distance over which the field at one point in space is correlated with the field 
at another point in space. The correlation length is certainly no larger than the 
physical horizon distance at the time of the phase transition, and it is believed 
to typically be comparable to this upper limit. Note that an upper limit on ξ is a 
lower limit on nM — there must be at least of order one monopole per horizon-sized 
volume. 

Assume that the particles of the grand unified theory form a thermal gas of 
blackbody radiation, as described by Eq. (6.48) of Lecture Notes 6, 

π2 (kT )4 

u = g ,
30 (h̄c)3 

with gGUT ∼ 200. Further assume that the universe is flat and radiation-dominated 
from its beginning to the time of the GUT phase transition, tGUT. 

For each of the following questions, first write the answer in terms of physical 
constants and the parameters Tc, MM , and gGUT, and then evaluate the answers 
numerically. 

(a)	 (5 points) Under the assumptions described above, at what time tGUT does 
the phase transition occur? Express your answer first in terms of symbols, and 
then evaluate it in seconds. 

(b)	 (5 points) Using Eq. (P5.1) and setting ξ equal to the horizon distance, estimate 
the number density nM of magnetic monopoles just after the phase transition. 



  �	 � 
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(c)	 (5 points) Calculate the ratio nM /nγ of the number of monopoles to the number 
of photons immediately after the phase Refer to Lecture Notes 6 to remind 
yourself about the number density of photons. 

(d)	 (5 points) For topological reasons monopoles cannot disappear, but they 
form with an equal number of monopoles and antimonopoles, where the an­
timonopoles correspond to twists in the Higgs field in the opposite sense. 
Monopoles and antimonopoles can annihilate each other, but estimates of the 
rate for this process show that it is negligible. Thus, in the context of the 
conventional (non-inflationary) hot big bang model, the ratio of monopoles to 
photons would be about the same today as it was just after the phase transi­
tion. Use this assumption to estimate the contribution that these monopoles 
would make to the value of Ω today. 

PROBLEM 6: A ZERO MASS DENSITY UNIVERSE— GENERAL 
RELATIVITY DESCRIPTION 

(This problem is not required, but can be done for 20 points extra credit.) 

In this problem and the next we will explore the connections between special 
relativity and the standard cosmological model which we have been discussing. 
Although we have not studied general relativity in detail, the description of the 
cosmological model that we have been using is precisely that of general relativity. 
In the limit of zero mass density the effects of gravity will become negligible, and 
the formulas must then be compatible with the special relativity which we discussed 
at the beginning of the course. The goal of these two problems is to see exactly 
how this happens. 

These two problems will emphasize the notion that a coordinate system is noth­
ing more than an arbitrary system of designating points in spacetime. A physical 
object might therefore look very different in two different coordinate systems, but 
the answer to any well-defined physical question must turn out the same regardless 
of which coordinate system is used in the calculation. 

From the general relativity point of view, the model universe is described by 
the Robertson-Walker spacetime metric: 

dr2
2ds2 = −c 2dt2 + a 2(t) + r dθ2 + sin2 θdφ2 .ST	 1 − kr2 

I have included the subscript “ST” to remind us that this formula gives the full 
spacetime metric, as opposed to the purely spatial metric which we discussed earlier. 
This formula describes the analogue of the “invariant interval” of special relativity, 
measured between the spacetime points (t, r, θ, φ) and (t + dt, r + dr, θ + dθ, φ + dφ). 

( )
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The evolution of the model universe is governed by the general relation 	  2 
ȧ 8π kc2 

= Gρ − , 
a 3 a2 

except in this case the mass density term is to be set equal to zero. 

(a)	 (5 points) Since the mass density is zero, it is certainly less than the critical 
mass density, so the universe is open. We can then choose k = −1. Derive an 
explicit expression for the scale factor a(t). 

(b)	 (5 points) Suppose that a light pulse is emitted by a comoving source at time 
te, and is received by a comoving observer at time to. Find the Doppler shift 
ratio z. 

(c)	 (5 points) Consider a light pulse that leaves the origin at time te. In an in­
finitesimal time interval dt the pulse will travel a physical distance ds = cdt. 
Since the pulse is traveling in the radial direction (i.e., with dθ = dφ = 0), one 
has 

cdt = a(t) √ 
dr 

. 
1 − kr2 

Note that this is a slight generalization of Eq. (3.8), which applies for the case 
of a Euclidean geometry (k = 0). Derive a formula for the trajectory r(t) of 
the light pulse. You may find the following integral useful: 

dr √ = sinh−1 r . 
1 + r2 

(d)	 (5 points) Use these results to express the redshift z in terms of the coordinate 
r of the observer. If you have done it right, your answer will be independent 
of te. (In the special relativity description that will follow, it will be obvious 
why the redshift must be independent of te. Can you see the reason now?) 

PROBLEM 7: A ZERO MASS DENSITY UNIVERSE— SPECIAL 
RELATIVITY DESCRIPTION 

(This problem is also not required, but can be done for 20 points extra credit.) 

In this problem we will describe the same model universe as in the previous 
problem, but we will use the standard formulation of special relativity. We will 
therefore use an inertial coordinate system, rather than the comoving system of the 
previous problem. Please note, however, that in the usual case in which gravity is 
significant, there is no inertial coordinate system. Only when gravity is absent does 
such a coordinate system exist. 
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To distinguish the two systems, we will use primes to denote the inertial co­
' 'ordinates: (t', x , y , z'). Since the problem is spherically symmetric, we will also 

introduce “polar inertial coordinates” (r', θ', φ') which are related to the Cartesian 
inertial coordinates by the usual relations: 

'x = r' sin θ' cos φ' 

'y = r' sin θ' sin φ' 

' 'z = r cos θ' . 

In terms of these polar inertial coordinates, the invariant spacetime interval of 
special relativity can be written as 

'2ds2 = −c 2dt'2 + dr'2 + rST	 dθ'2 + sin2 θ'dφ'2 . 

For purposes of discussion we will introduce a set of comoving observers which 
travel along with the matter in the universe, following the Hubble expansion pattern. 
(Although the matter has a negligible mass density, I will assume that enough of it 
exists to define a velocity at any point in space.) These trajectories must all meet 
at some spacetime point corresponding to the instant of the big bang, and we will 
take that spacetime point to be the origin of the coordinate system. Since there 
are no forces acting in this model universe, the comoving observers travel on lines 
of constant velocity (all emanating from the origin). The model universe is then 
confined to the future light-cone of the origin. 

(a)	 (5 points) The cosmic time variable t used in the previous problem can be 
defined as the time measured on the clocks of the comoving observers, start­
ing at the instant of the big bang. Using this definition and your knowledge 
of special relativity, find the value of the cosmic time t for given values of 
the inertial coordinates— i.e., find t(t', r'). [Hint: first find the velocity of a 
comoving observer who starts at the origin and reaches the spacetime point 
(t', r', θ', φ'). Note that the rotational symmetry makes θ' and φ' irrelevant, so 
one can examine motion along a single axis.] 

(b)	 (5 points) Let us assume that angular coordinates have the same meaning in 
the two coordinate systems, so that θ = θ' and φ = φ'. We will verify in part 
(d) below that this assumption is correct. Using this assumption, find the value 
of the comoving radial coordinate r in terms of the inertial coordinates— i.e., 
find r(t', r'). [Hint: consider an infinitesimal line segment which extends in 
the θ-direction, with constant values of t, r, and φ. Use the fact that this line 
segment must have the same physical length, regardless of which coordinate 
system is used to describe it.] Draw a graph of the t'-r' plane, and sketch in 
lines of constant t and lines of constant r. 

( )
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(c)	 (5 points) Show that the radial coordinate r of the comoving system is related 
to the magnitude of the velocity in the inertial system by 

v/c 
r = � . 

1 − v2/c2 

'Suppose that a light pulse is emitted at the spatial origin (r = 0, t ' = 
anything) and is received by another comoving observer who is traveling at 
speed v. With what redshift z is the pulse received? Express z as a function 
of r, and compare your answer to part (d) of the previous problem. 

(d)	 (5 points) In this part we will show that the metric of the comoving coordi­
nate system can be derived from the metric of special relativity, a fact which 
completely establishes the consistency of the two descriptions. To do this, first 
write out the equations of transformation in the form: 

' t =? 
' r =? 

θ ' =? 

φ ' =? , 

where the question marks denote expressions in t, r, θ, and φ. Now consider 
an infinitesimal spacetime line segment described in the comoving system by 
its two endpoints: (t, r, θ, φ) and (t + dt, r + dr, θ + dθ, φ + dφ). Calculating 
to first order in the infinitesimal quantities, find the separation between the 
coordinates of the two endpoints in the inertial coordinate system— i.e., find 
dt ' , dr ' , dθ ', and dφ ' . Now insert these expressions into the special relativity 
expression for the invariant interval ds2 , and if you have made no mistakes ST 
you will recover the Robertson-Walker metric used in the previous problem. 

DISCUSSION OF THE ZERO MASS DENSITY UNIVERSE: 

The two problems above demonstrate how the general relativistic description 
of cosmology can reduce to special relativity when gravity is unimportant, but it 
provides a misleading picture of the big-bang singularity which I would like to clear 
up. 

First, let me point out that the mass density of the universe increases as one 
looks backward in time. If the mass density parameter Ω ≡ ρ/ρc for our universe 
has a value of 0.2, at the low end of the empirically allowed range, then the universe 
today can be approximately modeled by the zero mass density universe. However, 
provided that Ω is greater than zero today, the zero mass density model cannot be 
taken as a valid model for the early history of the universe. 
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In the zero mass density model, the big-bang “singularity” is a single spacetime 
point which is in fact not singular at all. In the comoving description the scale factor 
a(t) equals zero at this time, but in the inertial system one sees that the spacetime 
metric is really just the usual smooth metric of special relativity, expressed in a 
peculiar set of coordinates. In this model it is unnatural to think of t = 0 as really 
defining the beginning of anything, since the the future light-cone of the origin 
connects smoothly to the rest of the spacetime. 

In the standard model of the universe with a nonzero mass density, the behavior 
of the singularity is very different. First of all, it really is singular— one can 
mathematically prove that there is no coordinate system in which the singularity 
disappears. Thus, the spacetime cannot be joined smoothly onto anything that may 
have happened earlier. 

The differences between the singularities in the two models can also be seen by 
looking at the horizon distance. We learned in Lecture Notes 4 that light can travel 
only a finite distance from the time of the big bang to some arbitrary time t, and 
that this “horizon distance” is given by 

t c 
�p(t) = a(t) dt ' . 

a(t ')0 

For the scale factor of the zero mass density universe as found in the problem, one 
can see that this distance is infinite for any t— for the zero mass density model 
there is no horizon. For a radiation-dominated model, however, there is a finite 
horizon distance given by 2ct. 

Finally, in the zero mass density model the big bang occurs at a single point 
in spacetime, but for a nonzero mass density model it seems better to think of 
the big bang as occurring everywhere at once. In terms of the Robertson-Walker 
coordinates, the singularity occurs at t = 0, for all values of r, θ, and φ. There 
is a subtle issue, however, because with a(t = 0) = 0, all of these points have 
zero distance from each other. Mathematically the locus t = 0 in a nonzero mass 
density model is too singular to even be considered part of the space, which consists 
of all values of t > 0. Thus, the question of whether the singularity is a single 
point is not well defined. For any t > 0 the issue is of course clear— the space 
is homogeneous and infinite (for the case of the open universe). If one wishes to 
ignore the mathematical subtleties and call the singularity at t = 0 a single point, 
then one certainly must remember that the singularity makes it a very unusual 
point. Objects emanating from this “point” can achieve an infinite separation in 
an arbitrarily short length of time. 

Total points for Problem Set 9: 105, plus an optional 40 points of extra 
credit. 

∫
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