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Lecture 1 (Sep. 6, 2017)

1.1 A “Weird” Example in Quantum Mechanics

Suppose we have an atom with spin-1 , and we measure the z-component of its spin, Sz. The first2
claim of quantum mechanics that differs from classical mechanics is that we will always find one of

~the two values, ±2 , where ~ = h .2π
The first thing we should wonder is, “How can we reasonably make this measurement?” There

is a standard setup for such a measurement known as the Stern–Gerloch filter. We shoot a beam
of these atoms through a region of spatially-varying magnetic field B = B(z)ẑ, such as the region
between a square north-pole magnet and a pointed south-pole magnet. When travelling through
this region, spin-up and spin-down particles will deflect in opposite directions, allowing us to filter
the particles by their spin.

The reason this works is that the energy of the magnetic dipole moment of the atom in the
magnetic field is

E = −µ ·B = −µzBz , (1.1)

and the force on the atom in the z-direction is thus

∂E
Fz = −

∂z
= µz

dBz
. (1.2)

dz

Thus, states with different values of µz will deflect in different directions along the z-axis.
Now, let’s imagine we have such an apparatus that can filter out the components of spin. We

could modify this apparatus by changing its axis of orientation, and in this way we could create
filters for spin along each of the x-, y-, and z-axes. Imagine then a sequence of filtering protocols
to which we can subject our beam of atoms.

~First, suppose we use this device to select out the Sz = + atoms, and then measure Sz once2
again. This can be done by feeding the spin-up output of one z-oriented Stern–Gerloch filter into
the input of a second z-oriented Stern–Gerloch filter. With this setup, we will find that 100% of
the output of the second Stern–Gerloch filter will be spin-up.

Now consider altering this setup so that the second filter is oriented along the x-axis, so we are
sending the atoms through a z-axis filter and then an x-axis filter. The claim in quantum mechanics

~is that we will now find that Sx = +2 50% of the time, and Sx = −~
2 50% of the time.

Now let’s complicate matters further by taking the Sx = +~ output of the x-axis filter and2
feeding it into yet another z-axis filter. The claim is that we will find Sz ~= +2 50% of the time,
and Sz = −~ 50% of the time. We have filtered out atoms that are only spin-up along the z-axis,2
then from among these we have filtered out only those that are spin-up along the x-axis, and then
measured the spin along the z-axis again, and found that the atoms are equally likely to be spin-up
and spin-down along the z-axis.

The reason for this phenomenon is that in quantum mechanics, Sz and Sx are incompatible
observables, and cannot be measured simultaneously with complete accuracy. As far as we know,
this behavior is inconsistent with a classical description of the state of a spin-1 particle.2

1.2 The Fundamental Postulates of Quantum Mechanics

We will take the following as postulates of a quantum mechanical system:

1. The state of a quantum mechanical system at a fixed time t is given by a mathematical object
known as a vector (or more precisely, a ray) |ψ〉, which is an element of a complex Hilbert
space H.
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2. Observers cannot measure the state directly, but rather can only measure observables, which
are Hermitian operators that act in the Hilbert space H, and whose eigenvectors form a
complete set.

ˆ3. A measurement of an observable A returns one of its eigenvalues.

ˆa. If A is measured in a state |ψ〉, then the probability that A = a is given by

〈ψ|Ma|ψ〉 , (1.3)

where
Ma = aj aj (1.4)

j:

∑
aj=a

| 〉〈 |

is the measurement operator. Here, the sum is over all states |aj〉 with eigenvalue a, i.e.,
Â|aj〉 = a|aj〉.

b. After measurement, the system is in the state

|ψ̃〉 ∝Ma|ψ〉 . (1.5)

This is an often-discussed feature of quantum mechanics, referred to as the “collapse”
of the wavefunction.

4. Time evolution is carried out by a map

|ψ(t)〉 7→ |ψ t′ 〉 = U(t′, t)|ψ(t)〉 , (1.6)

where U(t′, t) is the time-evolution operator

( )
, which is a unitary operator, U †U = 1. The

infinitesimal form of the time-evolution operator, when t′ and t are infinitesimally separated,
takes the form

d
i~ ˆψ

t
| (t)〉 = H|ψ(t)

d
〉 , (1.7)

ˆwhere H is a Hermitian operator called the Hamiltonian.

1.3 Mathematical Preliminaries

1.3.1 Hilbert Spaces

We will begin by recalling the definition of a vector space. A vector space V is a collection of
objects {|α〉} with several properties:

1. There is a well-defined addition operator ‘+’ defined on this collection, so that for any
|α〉, |β〉 ∈ V , there exists a unique state

|α〉+ |β〉 := |γ〉 ∈ V . (1.8)

a. We demand that the addition operator is commutative: for all |α〉, |β〉 ∈ V ,

|α〉+ |β〉 = |β〉+ |α〉 . (1.9)

b. We demand that the addition operator is associative: for all |α〉, |β〉, |γ〉 ∈ V ,

(|α〉+ |β〉) + |γ〉 = |α〉+ (|β〉+ |γ〉) . (1.10)



Lecture 1 8.321 Quantum Theory I, Fall 2017 3

2. We require the existence of a null vector |0〉 ∈ V with the property that

|0〉+ |α〉 = |α〉 (1.11)

for all |α〉 ∈ V .

3. For all |α〉 ∈ V , we require the existence of an inverse state −|α〉 ∈ V with the property

|α〉+ (−|α〉) = |0〉 . (1.12)

4. There is a well-defined scalar multiplication operation: for some field F (such as R or C), we
can multiply any state |α〉 ∈ V by any scalar c ∈ F, yielding a unique state c|α〉 ∈ V .

a. For all c, d ∈ F and |α〉 ∈ V , scalar multiplication must satisfy

c(d|α〉) = (cd)|α〉 , (1.13)

where cd indicates multiplication in the field F.

b. For all |α〉 ∈ V , the multiplicative identity element 1 ∈ F must satisfy

1|α〉 = |α〉 . (1.14)

c. Scalar multiplication must distribute over addition in the vector space: for all c ∈ F and
|α〉, |β〉 ∈ V , we must have

c(|α〉+ |β〉) = c|α〉+ c|β〉 (1.15)

d. Scalar multiplication must distribute over addition in the field of scalars: for all c, d ∈ F
and |α〉 ∈ V , we must have

(c+ d)|α〉 = c|α〉+ d|α〉 . (1.16)

If the field of scalars is F, then we refer to V as a “vector space over F.” A vector space V is
called a real vector space if its field of scalars is the field of real numbers, F = R, and a complex
vector space if its field of scalars is the field of complex numbers, F = C.

As a familiar example, we might consider the vectors in Rn of the form

v = (v1, . . . , vn) . (1.17)

These form a real vector space under addition. We could also consider the space of states of a
spin-1 particle,2

c+|+〉+ c−|−〉 , (1.18)

with c ∈ C, which form a complex vector space. A more interesting example of a vector space is±
the space of all real functions f(x) on the interval [0, 1].

A subset V ⊂ W of a vector space W is a subspace of W if it itself is a vector space over the
field of scalars of W . A ray is a subspace of a vector space V of the form {c|α〉 | c ∈ F}, for some
|α〉 ∈ V .

A collection of vectors |α1〉, . . . , |αn〉 ∈ V is linearly independent if and only if the statement

∑n
cj α

=1

| j〉 = 0 (1.19)
j
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implies that cj = 0 for all j = 1, . . . , n. A collection of vectors {|αj〉} is maximally linearly
independent if it is linearly independent and there exists no state |β〉 ∈ V such that the collection
{|αj〉, |β〉} is linearly independent. In this case, {|αj〉} is called a basis for V , and the number of
elements n in the collection is called the dimension of V , denoted dimV . The dimension of a vector
space can be finite or infinite, and if infinite, can be either countable (also called denumerable) or
uncountable.

Let’s consider some examples. A finite-dimensional vector space with which we are already
familiar is Rn, which has dimRn = n. An example of a infinite-dimensional vector space is the
space of square-integrable functions on the interval [0, 1] with f(0) = f(1) = 0. This is a countable
vector space: we can expand such a function f(x) as

∞

f(x) =
∑

ck sin(πkx) , (1.20)
k=1

which provides a countable basis of functions for this space.
Similarly, we can consider the vector space of square integrable functions on (−∞,∞). More

surprisingly, this vector space also has countable dimension. A clean way to see this is to produce
a countable basis for this space: one such basis is the set of eigenfunctions of the simple harmonic
oscillator. These eigenfunctions are all square-integrable, and any other wavefunction can be ex-
panded in this basis. The oscillator eigenfunctions are labelled by integers, so this shows that this
space is countable. This may seem confusing, because another basis we might use is the position
basis, where our basis elements are Dirac delta functions at each position; the problem with this
approach is that the Dirac delta function is not itself square-integrable.
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