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Lecture 15 (Nov. 1, 2017)

15.1 Charged Particle in a Uniform Magnetic Field

Last time, we discussed the quantum mechanics of a charged particle moving in a uniform magnetic
field B = Bz. We decomposed the Hamiltonian as

P2
H = ﬁ + Hoq, (15.1)
with ) )
I 4+ 11
9 = ﬁ (15.2)
The Hamiltonian Hsq has spectrum
1
ECY = hy, <n + 2> , (15.3)
with the cyclotron frequency given by
eB

We then wanted to determine the degeneracy of these energy levels, called Landau levels. We
defined the guiding center coordinates,
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RJ} =X + Eﬂy s Ry = y — EHQ) . (155)
These variables are conjugate, up to a multiplicative factor,
c . .
(R, Ry] = ——5ih = —il% (15.6)

and both commute with the Hamiltonian. As we showed on the homework, this implies that the
Hamiltonian is degenerate. Here, £p is the magnetic length, which is the length scale such that if
we cut out a circular disk of radius £p orthogonal to the magnetic field, then the flux through the
disk is on the order of one flux quantum:

TBIL = — ~ — =, (15.7)

where @ is the flux quantum.

The guiding center coordinates are the coordinates of the center of the cyclotron orbit, which
are a constant of the motion. This statement is equivalent to the statement that the guiding center
coordinates commute with the Hamiltonian. In the quantum theory, the size of the orbit is set by
the only length scale in the problem, the magnetic length. We expect that the degeneracy is the
number of flux quanta passing through the sample, ~ %TA, where A is the area of the sample.

Now we will calculate the degeneracy explicitly. We pick a particular gauge to work in, for
convenience. We choose

Ay=Bx, A,=0. (15.8)
This is known as Landau gauge. In this gauge,
2
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In this gauge, [p,, H] = 0, so we can label states by their p, eigenvalue. For any fixed p,, we get a
one-dimensional simple harmonic oscillator of frequency w., which reproduces the spectrum

1
ECY = hu, <n + 2) . (15.10)
The energy eigenfunctions take the form
ipyy/h cp
Ynp, = PV, (a: - —eé’) : (15.11)

This is a plane wave multiplied by a shifted SHO wavefunction. It is now clear that states with
different values of p, will be degenerate. The degeneracy question then becomes the question of
how many distinct values of p, exist for a system of a given area.

Consider a sample of lengths L, and L, along the z- and y-directions, respectively, with periodic
boundary conditions along the y-direction. We then must have

ePulu/l — 1 (15.12)

which gives us quantized momentum modes along the y-direction,

2mmh
py= 2 e, (15.13)
Ly
Each of the degenerate wavefunctions ¢, ,, (7, y) has a modulus ‘qﬁn (:U — C@%)‘ and is centered at

z = (é) (272371) . (15.14)

However, we cannot arbitrarily shift these SHO groundstate wavefunctions, because the sample
has a finite length L, in the z-direction. Thus, the y-direction momentum is quantized because of
the finite length in the y-direction, and has a finite number of possible values because of the finite
length in the z-direction. The number of independent states is then
L BL,L BA BA
g: z :6 i y:e = — (1515)

(GB) <2L7ryf) 2mhe hc Oy’

as we expected.
In classical mechanics, we can prove that there is no diamagnetism. In classical statistical
mechanics, everything is determined by the partition function,

daz; dp; ﬂ(zi%W({mi}))
ZOC/H o) . (15.16)

In the presence of a magnetic field, the Hamiltonian changes,
dzidp; -5(S (oA Ly (i)

. 15.1
/H 27h)3 (15.17)

However, we can simply shift the momenta as pj = p; — ¢ A(=;), which then gives us Z[A] = Z[A =
0]. Thus, classically, the magnetic field does not affect the statistical mechanics. However, we have
just seen that in quantum mechanics, there is an effect. This effect is purely quantum mechanical.
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We might wonder how a two-dimensional problem of motion in the x,y-plane turned into a
one-dimensional SHO. The electron is localized around the guiding center coordinates. However,
we see that the two coordinates do not commute with one another. Thus, there is only one real
coordinate in the problem, and the other coordinate is its conjugate variable. This is why we are
only solving a one-dimensional problem at the end of the day. Note that because R, and R, do
not commute, we cannot be in a simultaneous eigenstate of both, so the location of guiding center
itself must be smeared out.

15.2 Composite Systems

We now consider composite systems, which are systems composed of two (or more) subsystems.
Suppose we have two systems A and B, with Hilbert spaces H 4 and Hpg, respectively. We want to
obtain the Hilbert space of the composite space A + B, which is called the tensor product of H
and Hpg.

Consider a basis [{¢;}) of H4 and a basis [{x;}) of Hp. We will define new vectors |¢;) ® |x;)
that live in a new Hilbert space, denoted Hayp = Ha ® Hp. These |¢;) ® |x;) will provide a basis
for the Hilbert space H 44 p, meaning that any state in H 44+ p can be decomposed as

Wars) =D Pildi) @ |x;) - (15.18)
2
Often times, we will omit the tensor product symbol ® for convenience, when the meaning is clear.
Thus, we will write |¢;)|x;) = [¢i) ® |x;)-

We can then write down operators on H 4+ p and formulate the quantum theory as we have
before. There are classes of operators that act on only one of the two subsystems, such as O =
04 ® 1p, but in general we can have operators that act nontrivially on both subsystems at once.

1

Consider, in particular, a system of two spin-5 particles A and B. Some possible states in the

composite Hilbert space can be written as a single tensor product, such as
1
V2
There are clearly an infinite number of such states. There are also more interesting states (entangled
states) that cannot be written as a single tensor product, such as
1
V2

Some of the operators on this Hilbert space act only on one of the subsystems, such as 04 ®1p :=

0% (the second way of writing this is a notational convenience). However, there are more general

operators that act nontrivially on both subsystems simultaneously, such as ¢ ® a% = Uﬁa%.

Ta) @ts), Na)elts), [ta)©|—=(T8)+ 5| (15.19)

(Ita) @ lB) — Ha) @ |1B))- (15.20)

15.2.1 Quantum Entanglement

Two subsystems A and B of a quantum mechanical system can be entangled with one another. For
example, consider again the system of two Spin—% particles A and B. Some states, such as

[ta)®@lB), [Ta)®[B), (15.21)
have the property that if we restrict our view to only one of the subsystems, then the system is in
a well-defined state of that subsystem. By contrast, if we consider a state such as

1

ﬁ(‘TA> ®[lp) £ [{a) ®[1B)), (15.22)
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then we see that neither spin by itself is in a definite quantum state, despite the fact that the
composite system is in a definite state. This is an entangled state.

Entanglement is a statement about the relation of subsystems of a system to one another. It
does not make sense to ask if the state of a system “is entangled.” Instead, we can make statements
about whether two subsystems are entangled with one another. If we have subsystems A and B of
some composite system, then an unentangled state is precisely one that can be factored as a tensor
product of states of the two subsystems,

[YatB) = ta) ® [¥B) - (15.23)

An entangled state is one that cannot be factorized in this way.
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