
Lecture 19 8.321 Quantum Theory I, Fall 2017 82

Lecture 19 (Nov. 15, 2017)

19.1 Rotations

Recall that rotations are transformations of the form xi → Rijxj (using Einstein summation nota-
tion), where R is an orthogonal matrix, RTR = 1. This R is called a rotation matrix. For now, we
will restrict to rotations R with detR = +1 (orientation-preserving or proper rotations).

Every rotation R of space corresponds to a unitary operator D(R) on the Hilbert space, which
satisfies

D(R1)D(R2) = D(R1R2) . (19.1)

We will discuss this composition property more later. A quantum state transforms as |α〉 → |αR〉
under this rotation, such that

|αR〉 = D(R)|α〉 . (19.2)

For a vector operator Vi, with i = 1, . . . , d, we require

〈βR|Vi|αR〉 = Rij〈β|Vj |α〉 . (19.3)

Expanding the transformed bra and ket, this is

〈β|D†(R)ViD(R)|α〉 = Rij〈β|Vj |α〉 . (19.4)

This is true for any states |α〉, |β〉, which implies that the operators must be equal:

D†(R)ViD(R) = RijVj (19.5)

holds as an operator equation.
Consider the infinitesimal rotation R = 1 − ω. The orthogonality condition, RTR = 1, then

implies that ωT = −ω. Thus, ω is a real, antisymmetric matrix. We can then expand D(R) in the
form

iD(R) ≈ 1− ω
2~
∑

ijJij +O
ij

This expansion identifies the objects J = J as the Hermitian

(
ω2
)
. (19.6)

ij − ji generators of rotations. Note
that the antisymmetry of Jij follows from the antisymmetry of ωij .

Let us now specialize to three dimensions, d = 3. In this case, we can write

iD(R) = 1− (J ω + J ω + J ω ) +O ω2 , (19.7)
~ 12 12 23 23 31 31

where we have used the antisymmetry of Jij to group terms. We define

( )

J1 := J23 , J2 := J31 , J3 := J12 , (19.8)

i.e.,
1

Ji = εijkJjk , (19.9)
2

where εijk is the totally antisymmetric symbol with ε123 = +1, known as the Levi–Civita symbol.
We can similarly define

θ1 := ω23 , θ2 := ω31 , θ3 := ω12 , (19.10)

i.e.,
1

θi =
2
εijkωjk , ωij = εijkθk . (19.11)
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Then, we have
iD(R) = 1− θkJk +O

(
θ2
)
. (19.12)

~
Note that

Rij = δij − εijkθ 2
k +O

(
θ
)
. (19.13)

Thus,
xi → x′i = Rijxj = (δij − εijkθk)xj = xi − εijkxjθk , (19.14)

i.e.,
x→ x′ = x+ θ × x . (19.15)

Thus, the meaning of θ is that x is rotated by an angle |θ| about the θ-direction.
We now define Jk to be the components of the angular momentum. First, we will derive the

commutation relations of Jk with any vector operator Vi. We start with the equation

D†(R)ViD(R) = RijVj (19.16)

and take R = 1− ω with ω infinitesimal. The left-hand side then becomes(
iθkJk

1 +
~

)
Vi

(
1− iθ`J`

~

)
= Vi +

iθk
[J

~ k, Vi] , (19.17)

while the right-hand side becomes

RijVj = Vi − εijkVjθk . (19.18)

Thus, we conclude that
[Jk, Vi] = i~εkijVj . (19.19)

We can then use a combination of rotations to deduce the angular momentum algebra, via

D(R1)D(R2) = D(R1R2) . (19.20)

In particular, this composition rule implies that

D(R 1 1
φ)D(Rθ)D

(
Rφ
−
)

= D
(
RφRθRφ

−
)
. (19.21)

The rotation RφRθR
−1 can be written as a single rotation Rθ′ for some θ′. As θ itself is a vector,φ

for φ infinitesimal, we have
θ′ = θ + φ× θ . (19.22)

If we take θ to be infinitesimal, we have

iθD k
(Rθ) 1− kJ

= +O
(
θ2
)
, (19.23)

~

so (19.21) becomes

θkD(Rφ)JkD
(
R 1 = θ J (19.24)φ
−
)

k
′

k

The left-hand side of this equation, for infinitesimal φ is

j
θ

(
iφ

1− jJ
k ~

)
Jk

(
1 +

iφ`J`
~

)
= θkJk −

iθkφj
~

[Jj , Jk] + · · · , (19.25)
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while the right-hand side is
θkJk + εjk`φjθkJ` + · · · , (19.26)

which leads us to conclude that
[Ji, Jj ] = i~εijkJk . (19.27)

This is the angular momentum commutation algebra. Note that this matches the commutation
relation for a vector operator with the angular momentum operator, so this shows that the angular
momentum operator is a vector.

In general, we can write the angular momentum as

J = L+ S , (19.28)

with L = x×p is the orbital angular momentum and S is an internal property that commutes with
x, p, etc. We can check that L on its own satisfies the angular momentum commutation algebra,
so the operator J will satisfy the angular momentum algebra if S does. The operator S is the spin
operator.

If the Hamiltonian is rotationally invariant, then [Ji, H] = 0, which implies that

dJi
= 0 , (19.29)

dt

and so angular momentum is conserved.

19.1.1 Eigensystem of Angular Momentum

Let us now understand the implications of the commutation algebra

[Ji, Jj ] = i~εijkJk . (19.30)

You will show on the homework that

This means that we can diagonalize J2 and

[
J2, Ji = 0 . (19.31)

one

]
component of the angular momentum, say Jz,

simultaneously. We can then label the eigenstates of Jz by |j,m〉, with

J2|j,m〉 = a|j,m〉 , Jz|j,m〉 = b|j,m〉 , (19.32)

for some eigenvalues a, b. The meanings of the values j and m will become apparent shortly.
It is useful to define the ladder operators

J = J± x ± iJy , (19.33)

which satisfy
[J+, J ] = 2~Jz , [Jz, J ] = ±~J ,

[
J2, J

]
= 0 . (19.34)− ± ± ±

Using these commutation relations, we see that

Jz(J |j,m± 〉) = (J J± z ± ~J )± |j,m〉
(19.35)

= (b± ~)(J±|j,m〉) .

Thus, J j,m is also an eigenstates of J with eigenvalue b ~.±| 〉 z ±
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We can write
J2 = J2

x + J2
y + J2

z

= J2 1
z +

2
(J+J− + J−J+)

= J2
z +

1

(19.36)

J+J
†

2 + + J J† ,− −

which tells us that J2 − J2 is

( )
z positive semi-definite,〈

j,m
∣∣J2 − J2

z

∣∣j,m〉 ≥ 0 . (19.37)

This implies that a− b2 ≥ 0 for all eigenstates. For a fixed a, this means that |b| has a maximum
value bmax. This seems to be in conflict with the statement that we can use J to raise or lower±
the eigenvalue arbitrarily. We conclude that at b = +bmax the state must be annihilated by J+,
and similarly, at b = −bmax the state must be annihilated by J .−

Call |max〉 the state with b = +bmax. Then, we have

J+|max〉 = 0 , (19.38)

which implies
J J− +|max〉 = 0 . (19.39)

Expanding the ladder operators, this becomes

(Jx − iJy)(Jx + iJy)|max〉 = J2 − J2
z − ~Jz |max〉 = 0 . (19.40)

This gives us

( )
a− b2max − ~bmax = 0 , (19.41)

i.e.,
a = bmax(bmax + ~) . (19.42)

Repeating this argument for the state |min〉 with b = −bmax yields the same result.
We now note that, because J+ increases the eigenvalue b, and this eigenvalue is bounded above

by bmax, we must be able to reach |max〉 from |min〉 by repeatedly applying J+. Say we can reach
|max〉 from |min〉 by n applications of J+. This implies that

bmax = −bmax + n~ , (19.43)

so
n~

bmax =
2

= j~ , (19.44)

with j ∈ 1 . We can then read off the eigenvalues for the state j,m ,2Z | 〉

a = ~2j(j + 1) , b = m~ , (19.45)

and see that m can take any of the 2j + 1 values −j,−j + 1, . . . , j − 1, j.
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