Lecture 19 (Nov. 15, 2017)

19.1 Rotations

Recall that rotations are transformations of the form $x_i \to R_{ij}x_j$ (using Einstein summation notation), where R is an orthogonal matrix, $R^{T}R = 1$. This R is called a *rotation matrix*. For now, we will restrict to rotations R with det R = +1 (*orientation-preserving* or *proper* rotations).

Every rotation R of space corresponds to a unitary operator $\mathcal{D}(R)$ on the Hilbert space, which satisfies

$$\mathcal{D}(R_1)\mathcal{D}(R_2) = \mathcal{D}(R_1R_2). \tag{19.1}$$

We will discuss this composition property more later. A quantum state transforms as $|\alpha\rangle \rightarrow |\alpha_R\rangle$ under this rotation, such that

$$|\alpha_R\rangle = \mathcal{D}(R)|\alpha\rangle. \tag{19.2}$$

For a vector operator V_i , with $i = 1, \ldots, d$, we require

$$\langle \beta_R | V_i | \alpha_R \rangle = R_{ij} \langle \beta | V_j | \alpha \rangle.$$
(19.3)

Expanding the transformed bra and ket, this is

$$\langle \beta | \mathcal{D}^{\dagger}(R) V_i \mathcal{D}(R) | \alpha \rangle = R_{ij} \langle \beta | V_j | \alpha \rangle.$$
(19.4)

This is true for any states $|\alpha\rangle, |\beta\rangle$, which implies that the operators must be equal:

$$\mathcal{D}^{\dagger}(R)V_i\mathcal{D}(R) = R_{ij}V_j \tag{19.5}$$

holds as an operator equation.

Consider the infinitesimal rotation $R = 1 - \omega$. The orthogonality condition, $R^{T}R = 1$, then implies that $\omega^{T} = -\omega$. Thus, ω is a real, antisymmetric matrix. We can then expand $\mathcal{D}(R)$ in the form

$$\mathcal{D}(R) \approx 1 - \frac{i}{2\hbar} \sum_{ij} \omega_{ij} J_{ij} + O(\omega^2) \,. \tag{19.6}$$

This expansion identifies the objects $J_{ij} = -J_{ji}$ as the Hermitian generators of rotations. Note that the antisymmetry of J_{ij} follows from the antisymmetry of ω_{ij} .

Let us now specialize to three dimensions, d = 3. In this case, we can write

$$\mathcal{D}(R) = 1 - \frac{i}{\hbar} (J_{12}\omega_{12} + J_{23}\omega_{23} + J_{31}\omega_{31}) + O(\omega^2), \qquad (19.7)$$

where we have used the antisymmetry of J_{ij} to group terms. We define

$$J_1 := J_{23}, \quad J_2 := J_{31}, \quad J_3 := J_{12}, \tag{19.8}$$

i.e.,

$$J_i = \frac{1}{2} \epsilon_{ijk} J_{jk} \,, \tag{19.9}$$

where ϵ_{ijk} is the totally antisymmetric symbol with $\epsilon_{123} = +1$, known as the *Levi-Civita symbol*. We can similarly define

$$\theta_1 := \omega_{23}, \quad \theta_2 := \omega_{31}, \quad \theta_3 := \omega_{12},$$
(19.10)

i.e.,

$$\theta_i = \frac{1}{2} \epsilon_{ijk} \omega_{jk}, \quad \omega_{ij} = \epsilon_{ijk} \theta_k.$$
(19.11)

Then, we have

$$\mathcal{D}(R) = 1 - \frac{i}{\hbar} \theta_k J_k + O(\theta^2).$$
(19.12)

Note that

$$R_{ij} = \delta_{ij} - \epsilon_{ijk}\theta_k + O(\theta^2).$$
(19.13)

Thus,

$$x_i \to x'_i = R_{ij}x_j = (\delta_{ij} - \epsilon_{ijk}\theta_k)x_j = x_i - \epsilon_{ijk}x_j\theta_k, \qquad (19.14)$$

i.e.,

$$\boldsymbol{x} \to \boldsymbol{x}' = \boldsymbol{x} + \boldsymbol{\theta} \times \boldsymbol{x}$$
. (19.15)

Thus, the meaning of θ is that x is rotated by an angle $|\theta|$ about the θ -direction.

We now define J_k to be the components of the angular momentum. First, we will derive the commutation relations of J_k with any vector operator V_i . We start with the equation

$$\mathcal{D}^{\dagger}(R)V_i\mathcal{D}(R) = R_{ij}V_j \tag{19.16}$$

and take $R = 1 - \omega$ with ω infinitesimal. The left-hand side then becomes

$$\left(1 + \frac{i\theta_k J_k}{\hbar}\right) V_i \left(1 - \frac{i\theta_\ell J_\ell}{\hbar}\right) = V_i + \frac{i\theta_k}{\hbar} [J_k, V_i], \qquad (19.17)$$

while the right-hand side becomes

$$R_{ij}V_j = V_i - \epsilon_{ijk}V_j\theta_k \,. \tag{19.18}$$

Thus, we conclude that

$$[J_k, V_i] = i\hbar\epsilon_{kij}V_j.$$
(19.19)

We can then use a combination of rotations to deduce the angular momentum algebra, via

$$\mathcal{D}(R_1)\mathcal{D}(R_2) = \mathcal{D}(R_1R_2). \tag{19.20}$$

In particular, this composition rule implies that

$$\mathcal{D}(R_{\phi})\mathcal{D}(R_{\theta})\mathcal{D}\left(R_{\phi}^{-1}\right) = \mathcal{D}\left(R_{\phi}R_{\theta}R_{\phi}^{-1}\right).$$
(19.21)

The rotation $R_{\phi}R_{\theta}R_{\phi}^{-1}$ can be written as a single rotation $R_{\theta'}$ for some θ' . As θ itself is a vector, for ϕ infinitesimal, we have

$$\boldsymbol{\theta}' = \boldsymbol{\theta} + \boldsymbol{\phi} \times \boldsymbol{\theta} \,. \tag{19.22}$$

If we take $\boldsymbol{\theta}$ to be infinitesimal, we have

$$\mathcal{D}(R_{\theta}) = 1 - \frac{i\theta_k J_k}{\hbar} + O(\theta^2), \qquad (19.23)$$

so (19.21) becomes

$$\theta_k \mathcal{D}(R_{\phi}) J_k \mathcal{D}\left(R_{\phi}^{-1}\right) = \theta'_k J_k \tag{19.24}$$

The left-hand side of this equation, for infinitesimal ϕ is

$$\theta_k \left(1 - \frac{i\phi_j J_j}{\hbar} \right) J_k \left(1 + \frac{i\phi_\ell J_\ell}{\hbar} \right) = \theta_k J_k - \frac{i\theta_k \phi_j}{\hbar} [J_j, J_k] + \cdots, \qquad (19.25)$$

while the right-hand side is

$$\theta_k J_k + \epsilon_{jk\ell} \phi_j \theta_k J_\ell + \cdots, \qquad (19.26)$$

which leads us to conclude that

$$[J_i, J_j] = i\hbar\epsilon_{ijk}J_k.$$
(19.27)

This is the angular momentum commutation algebra. Note that this matches the commutation relation for a vector operator with the angular momentum operator, so this shows that the angular momentum operator is a vector.

In general, we can write the angular momentum as

$$\boldsymbol{J} = \boldsymbol{L} + \boldsymbol{S} \,, \tag{19.28}$$

with $L = x \times p$ is the orbital angular momentum and S is an internal property that commutes with x, p, etc. We can check that L on its own satisfies the angular momentum commutation algebra, so the operator J will satisfy the angular momentum algebra if S does. The operator S is the spin operator.

If the Hamiltonian is rotationally invariant, then $[J_i, H] = 0$, which implies that

$$\frac{\mathrm{d}J_i}{\mathrm{d}t} = 0\,,\tag{19.29}$$

and so angular momentum is conserved.

19.1.1 Eigensystem of Angular Momentum

Let us now understand the implications of the commutation algebra

$$[J_i, J_j] = i\hbar\epsilon_{ijk}J_k.$$
(19.30)

You will show on the homework that

$$\left[\boldsymbol{J}^2, J_i\right] = 0. \tag{19.31}$$

This means that we can diagonalize J^2 and one component of the angular momentum, say J_z , simultaneously. We can then label the eigenstates of J_z by $|j,m\rangle$, with

$$J^{2}|j,m\rangle = a|j,m\rangle, \quad J_{z}|j,m\rangle = b|j,m\rangle, \quad (19.32)$$

for some eigenvalues a, b. The meanings of the values j and m will become apparent shortly.

It is useful to define the *ladder operators*

$$J_{\pm} = J_x \pm i J_y \,, \tag{19.33}$$

which satisfy

$$[J_{+}, J_{-}] = 2\hbar J_{z}, \quad [J_{z}, J_{\pm}] = \pm \hbar J_{\pm}, \quad [\mathbf{J}^{2}, J_{\pm}] = 0.$$
(19.34)

Using these commutation relations, we see that

$$J_z(J_{\pm}|j,m\rangle) = (J_{\pm}J_z \pm \hbar J_{\pm})|j,m\rangle$$

= $(b \pm \hbar)(J_{\pm}|j,m\rangle)$. (19.35)

Thus, $J_{\pm}|j,m\rangle$ is also an eigenstates of J_z with eigenvalue $b \pm \hbar$.

We can write

$$J^{2} = J_{x}^{2} + J_{y}^{2} + J_{z}^{2}$$

= $J_{z}^{2} + \frac{1}{2}(J_{+}J_{-} + J_{-}J_{+})$
= $J_{z}^{2} + \frac{1}{2}(J_{+}J_{+}^{\dagger} + J_{-}J_{-}^{\dagger}),$ (19.36)

which tells us that $J^2 - J_z^2$ is positive semi-definite,

$$\left\langle j,m \left| \boldsymbol{J}^2 - J_z^2 \right| j,m \right\rangle \ge 0.$$
(19.37)

This implies that $a - b^2 \ge 0$ for all eigenstates. For a fixed a, this means that |b| has a maximum value b_{\max} . This seems to be in conflict with the statement that we can use J_{\pm} to raise or lower the eigenvalue arbitrarily. We conclude that at $b = +b_{\max}$ the state must be annihilated by J_+ , and similarly, at $b = -b_{\max}$ the state must be annihilated by J_- .

Call $|\max\rangle$ the state with $b = +b_{\max}$. Then, we have

$$J_{+}|\mathrm{max}\rangle = 0\,,\tag{19.38}$$

which implies

$$J_{-}J_{+}|\max\rangle = 0.$$
 (19.39)

Expanding the ladder operators, this becomes

$$(J_x - iJ_y)(J_x + iJ_y)|\max\rangle = (J^2 - J_z^2 - \hbar J_z)|\max\rangle = 0.$$
 (19.40)

This gives us

$$a - b_{\max}^2 - \hbar b_{\max} = 0, \qquad (19.41)$$

i.e.,

$$a = b_{\max}(b_{\max} + \hbar). \tag{19.42}$$

Repeating this argument for the state $|\min\rangle$ with $b = -b_{\max}$ yields the same result.

We now note that, because J_+ increases the eigenvalue b, and this eigenvalue is bounded above by b_{\max} , we must be able to reach $|\max\rangle$ from $|\min\rangle$ by repeatedly applying J_+ . Say we can reach $|\max\rangle$ from $|\min\rangle$ by n applications of J_+ . This implies that

$$b_{\max} = -b_{\max} + n\hbar, \qquad (19.43)$$

 \mathbf{SO}

$$b_{\max} = \frac{n\hbar}{2} = j\hbar, \qquad (19.44)$$

with $j \in \frac{1}{2}\mathbb{Z}$. We can then read off the eigenvalues for the state $|j, m\rangle$,

$$a = \hbar^2 j(j+1), \quad b = m\hbar,$$
 (19.45)

and see that m can take any of the 2j + 1 values $-j, -j + 1, \ldots, j - 1, j$.

MIT OpenCourseWare https://ocw.mit.edu

8.321 Quantum Theory I Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.