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Lecture 19 (Nov. 15, 2017)

19.1 Rotations

Recall that rotations are transformations of the form x; — R;jz; (using Einstein summation nota-
tion), where R is an orthogonal matrix, R R = 1. This R is called a rotation matriz. For now, we
will restrict to rotations R with det R = +1 (orientation-preserving or proper rotations).
Every rotation R of space corresponds to a unitary operator D(R) on the Hilbert space, which
satisfies
D(R1)D(Rz) = D(R1Ry). (19.1)

We will discuss this composition property more later. A quantum state transforms as |a) — |ag)
under this rotation, such that

lar) = D(R)|a) (19.2)
For a vector operator V;, with ¢ = 1,...,d, we require
(Br|Vilar) = Rij{B|Vjla) . (19.3)

Expanding the transformed bra and ket, this is
(BID (R)ViD(R)|a) = Rij (8IVla) (19.4)
This is true for any states |}, |3), which implies that the operators must be equal:
DI(R)V;D(R) = R;;V; (19.5)

holds as an operator equation.
Consider the infinitesimal rotation R = 1 — w. The orthogonality condition, RTR = 1, then

implies that wT = —w. Thus, w is a real, antisymmetric matrix. We can then expand D(R) in the
form ]
? 2
D(R) ~1-— % Zwijjij + O(w ) . (19.6)
ij
This expansion identifies the objects J;; = —J;; as the Hermitian generators of rotations. Note

that the antisymmetry of J;; follows from the antisymmetry of w;;.
Let us now specialize to three dimensions, d = 3. In this case, we can write

D(R)=1- %(men + Jaozwaz + Js1ws1) + O(w?) (19.7)

where we have used the antisymmetry of J;; to group terms. We define
J1 = J23, J2 = J31 R J3 = J12, (19.8)

ie.,

1
Ji = §€ijk;<]jka (19.9)

where €5, is the totally antisymmetric symbol with €123 = +1, known as the Levi-Civita symbol.
We can similarly define
91 = W23, 02 = w31, 03 = w12, (19.10)
ie.,
1

0; = ieijkwjk7 wij = €0 . (19.11)
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Then, we have

D(R)=1-— %ekjk +0(6?) . (19.12)
Note that
Rij = (51']' - Eijktgk + 0(92) . (19'13)
Thus,
XT; — .T; = Rijxj = (513 - Ez‘jkek)l'j = T; — Gijkl‘jek y (1914)
ie.,
r—T=x+0xx. (19.15)

Thus, the meaning of 0 is that « is rotated by an angle |@| about the 6-direction.
We now define Ji, to be the components of the angular momentum. First, we will derive the
commutation relations of J; with any vector operator V;. We start with the equation

D'(R)V;D(R) = Ry;V; (19.16)

and take R = 1 — w with w infinitesimal. The left-hand side then becomes

<1+l];ijk)‘/;(1—1%h):v%‘f’lhk[‘]kv%]’ (19.17)

while the right-hand side becomes

Thus, we conclude that
[Jk, Vi] = iheri;Vj . (19.19)

We can then use a combination of rotations to deduce the angular momentum algebra, via
D(R1)D(R2) = D(R1R2) . (19.20)
In particular, this composition rule implies that

D(Rd,)D(Rg)D(R;l) - D(R¢RBR;1) : (19.21)

The rotation Rd,RgR(_bl can be written as a single rotation Ry for some 6’. As 6 itself is a vector,
for ¢ infinitesimal, we have

0=60+¢x80. (19.22)
If we take @ to be infinitesimal, we have
10y J,
D(Rg) = 1 - = +0(6?), (19.23)
so (19.21) becomes
akD(R¢)JkD(R;1) = 0, J, (19.24)

The left-hand side of this equation, for infinitesimal ¢ is

s ] "y
9k<1—wﬁjhj><]k(1+l¢e z) :gkjk_m[Jj,JkH..., (19.25)

h h
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while the right-hand side is
OrJr + €kediOr o+ - -, (19.26)

which leads us to conclude that
(i, Jj) = iheijiJy - (19.27)

This is the angular momentum commutation algebra. Note that this matches the commutation
relation for a vector operator with the angular momentum operator, so this shows that the angular
momentum operator is a vector.

In general, we can write the angular momentum as

J=L+S, (19.28)

with L = x X p is the orbital angular momentum and S is an internal property that commutes with
x, p, etc. We can check that L on its own satisfies the angular momentum commutation algebra,
so the operator J will satisfy the angular momentum algebra if S does. The operator S is the spin
operator.

If the Hamiltonian is rotationally invariant, then [J;, H] = 0, which implies that

dJ;
dt

0, (19.29)

and so angular momentum is conserved.

19.1.1 Eigensystem of Angular Momentum
Let us now understand the implications of the commutation algebra

You will show on the homework that
[J%,J;] =0. (19.31)

This means that we can diagonalize J? and one component of the angular momentum, say .J.,
simultaneously. We can then label the eigenstates of J, by |j, m), with

J2|j,m) = alj,m), J.|j,m)=0blj,m), (19.32)

for some eigenvalues a,b. The meanings of the values j and m will become apparent shortly.
It is useful to define the ladder operators

Ji=J, +ily, (19.33)

which satisfy
[y, J]=2RJ., [J.,Ju)==xhJy, [J* Ji]=0. (19.34)

Using these commutation relations, we see that

J(Jxlj,m)) = (J+J. £ hJx)|j,m)

= (b£ h)(Je|j,m)). (19.35)

Thus, Ji|j,m) is also an eigenstates of J, with eigenvalue b + h.
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We can write
=T+ I+ T2

1
= T2+ (T + Ty (19.36)
1
=24 (et gt
which tells us that J2 — J2 is positive semi-definite,

<j,m‘J2 — JZ2

jsm) > 0. (19.37)

This implies that a — b* > 0 for all eigenstates. For a fixed a, this means that |b| has a maximum
value bypax. This seems to be in conflict with the statement that we can use J4 to raise or lower
the eigenvalue arbitrarily. We conclude that at b = +bpnax the state must be annihilated by J;,
and similarly, at b = —byax the state must be annihilated by J_.

Call |max) the state with b = +byax. Then, we have

Ji|max) =0, (19.38)

which implies
J_Ji|max) =0. (19.39)

Expanding the ladder operators, this becomes

(Jo —idy) (Jy + iJy)|max) = (J* — JZ — hJ,)|max) = 0. (19.40)
This gives us
a—b2,, — hbmax =0, (19.41)
ie.,
a = bmax(bmax + 7). (19.42)
Repeating this argument for the state |min) with b = —bpax yields the same result.

We now note that, because J; increases the eigenvalue b, and this eigenvalue is bounded above
by bmax, we must be able to reach |max) from |min) by repeatedly applying J,. Say we can reach
|max) from |min) by n applications of J,. This implies that

bmax = _bmax + nh, (1943)
SO 5
bmax = % = ]h7 (1944)

with j € %Z. We can then read off the eigenvalues for the state |7, m),
a=Hh%j(j+1), b=mh, (19.45)

and see that m can take any of the 25 + 1 values —j,—j+1,...,7 —1,4.
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