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Lecture 20 (Nov. 20, 2017)

20.1 Matrix Elements of Angular Momentum Operators

Assume that we have normalized |j,m). By definition, since these are eigenstates of J? and .J,,
these operators are diagonal, with

./7 /J2 .7 —i(i+1 h2(5“/(5mm/,

<.7./ ml! Ij m) = j(j +1)h75;; (20.1)

(4", m/|J:|3,m) = mhojji Oy -

Now we only need to compute the matrix elements of J, and J,. We will make use of the
identity

(Gym| Iy J-|g,m) = (j,m|J? = JZ = hJ.|jm) = h*(j(j + 1) —m? —m).. (20.2)

We also know that

We still need to determine the coeflicient c( ) . Using (20.2) and J_ = J_JL, we see that

" = 12 + 1) = mlm -+ 1) = 1 = m)(j +m+ 1). (20.4)

(

We will choose (by convention) for ¢ +) to be real and positive, which then gives us

Jiljm) = h/(G —m)(G +m+1)]j,m+1). (20.5)

A similar argument gives us

J_|j,m) = h/(j+m)(j —m+1)[j,m —1). (20.6)

Packaging these results together, we have

(', m| Jxlg,m) = b/ (5 F m) (G £m + 1)8;56m mer - (20.7)

We see that when m = +j, the state is annihilated by J, and when m = —j, the state is annihilated
by J_, exactly as required.

We can now easily calculate the matrix elements of J, and Jy, as they are linear combinations
of J1. This allows us to explicitly write matrix representations of J for fixed j. As an example,

consider j = 1. In this case,
0
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J.=hl0o 0 0|, (20.8)
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where the basis is ordered as m = 41,0, —1. Using the matrix elements for Ji, we can write down
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For any fixed j, we can now also construct matrix elements of the finite rotation operator D(R).
For a fixed j, the angular momentum operators are (25 + 1) x (2j + 1) Hermitian matrices, and so
the rotation matrix D(R) will be (254 1) x (2j 4 1) unitary matrices. Consider a rotation by angle
# about the axis n. First, we construct an infinitesimal rotation by 66 about the axis n:

D(Rsp) =1 — %(J - )60 + O(66%) . (20.10)

We can then build up a finite rotation by multiplying infinitesimal rotations N times and taking
N — o0,
D(R(0,7)) = lim (D(0/N,n))"

N—oco
i 0 N
1 o 2
= Jim (1= G mg +ole/N) (201
_ —ifT R/

20.2 Rotation Groups

In general, symmetry operations form a mathematical structure called a group.

Definition 1. A set {g;} := G forms a group if there exists a multiplication operation - such that:
e forall g1,90 € G, g1 - g2 € G;

e multiplication is associative: for all g1, g2, g3 € G,
(91-92) - 93 =91 (92 93); (20.12)

e there exists 1 € GG such that

o for every g € G, there exists g~ € G such that
g-9g =g -g=1. (20.14)

For example, the set of 3 x 3 orthogonal matrices forms a group under the operation of matrix
multiplication. This group is known as the orthogonal group O(3). If we restrict our attention to
rotations with det R = +1, then we get a subgroup (a subset that is itself also a group under matrix
multiplication) called the special orthogonal group SO(3).

There is another pertinent group to the discussion of rotations, which is the group of 2 x 2
unitary matrices satisfying det U = 1. Any matrix of this kind can be written in the form

Ula,b) = (_“b ;’) : (20.15)
with |a|? + [b|> = 1. Such matrices form a group under matrix multiplication, known as the special
unitary group SU(2).

In quantum mechanics, rotations are represented by unitary operators D(R). These unitary
operators must themselves form a group, because the product of two of these operators must give
another, the composition is associative, there is an identity operation, and D(R_l) is the inverse of
D(R). In particular, we can see that the D(R) must satisfy the same group identities as the group
of rotations R.
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The matrix elements of D(R) are
D) (R) = (| j,m) (20.16)

Note that we have chosen the same j for both the bra and ket; this is because D(R) commutes with
J?, so a rotation cannot change the value of J?. As a result, in the full ket space, the (infinite-
dimensional) matrix for D(R) is block diagonal in the (j,m) basis, where each block corresponds
to one value of j. The block corresponding to j will be a (2j + 1) x (25 + 1) submatrix.

An explicit set of matrices that satisfies the same group identities as a group is called a (linear)
group representation. Thus, the D(R) form a representation of SO(3). In particular, this represen-
tation is called a completely reducible representation, because it can be written in block diagonal
form. Each block on the diagonal of D(R), taken as a standalone matrix Dﬁi}m for fixed j, is an
irreducible representation (sometimes referred to as an irrep), as it has no invariant subspaces.

Consider j = 1/2. In this case, m and m’ take on the values :l:%. The rotation operator matrix
elements are

DY (9, 7) = (m/[e= 07 /2| . (20.17)

m’,m

That is, the rotation operators are

D(1/2)(9,'ﬁ,) — e—i90'~’fl/2
0 (20.18)

=cos— —i(o-n)sin—.
2 2

Explicitly,

D1/2)(9,R) = (C°§ g —inzsing - (ing —my)sing) (20.19)
—ng + ny) sing COS3 + NSl g

This may seem unusual, because this is an SU(2) matrix. The operators D1/2 (4, 7) form a
representation of SU(2), even though we originally set out to find a representation of SO(3).
Rotations of 3D space can be characterized either by an SO(3) matrix R (a three-dimensional
irrep) or by an SU(2) matrix U (a two-dimensional irrep). But SO(3) and SU(2) are not in one-to-
one correspondence. Suppose we consider a rotation by 6 = 27 along some axis nn. For SO(3),

R(2m,R) = 13, (20.20)

while for SU(2), o
D2 (21, 7) = eI = 1. (20.21)

The result is that for any spin—% system, the phase of the wavefunction is rotated by 7w under a
physical 27 rotation.
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