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Lecture 23 (Nov. 29, 2017)

23.1 Consequences of Time Reversal Symmetry
23.1.1 Spinless Particles

Theorem 5. Consider a system of spinless particles. Suppose that H is time-reversal invariant,
and that there exists a non-degenerate energy eigenket |n). The corresponding energy eigenfunction
can be chosen to be real.

Proof. Because |n) is an energy eigenket, we have
Hn) = Ey|n) . (23.1)
Because time reversal is a symmetry, we then have
H(O|n)) = 0H|n) = E,(0|n)), (23.2)

which implies
In) = nln) (23.3)

for some phase 7, because |n) is non-degenerate. The corresponding wavefunction is then

Un(z) = (z[n) = n(z|0n) = ny; (). (23.4)

We can then make the redefinition ¢y () = /24, () in order to get a real wavefunction. This
completes the proof. ]

23.1.2 No Conservation Law

There is no conservation law associated with time reversal. Even though [0, H] = 0, there is no con-
cept of a time reversal quantum number. Despite the fact that § commutes with the Hamiltonian,
we find that

OU (t,to) # U(t, )0, (23.5)

where U(t, o) is the time-evolution operator. For example, suppose that we consider an energy
eigenstate,

H|y) = E[g) . (23.6)

Then,
(1)) = e P [(0)) (23.7)

while
Ol (t)) = B (0)) # [1(1)) . (23.8)

Thus, 0|¢) = |1) is not preserved under time evolution.

23.1.3 Kramer’s Rule for Half-Integer Spin

Theorem 6 (Kramer’s Rule). Time-reversal symmetry implies a two-fold degeneracy all energy
eigenstates.
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Proof. Suppose we have an energy eigenket |n),
H|n) = E,|n) . (23.9)

If time-reversal is a symmetry, then 6|n) has the same energy E,,. Suppose that

O|n) = e®|n). (23.10)
Then,
62|n) = 9(6i5]n>>
= e 0ln) (23.11)
— efiéeizs ’n>
=|n).
However, for half-integer spin, we have seen that §2 = —1, so this is a contradiction. Thus, |n)
must be a distinct state from |n). Thus, we get a two-fold degeneracy for all energy eigenstates.
There may be additional degeneracy, but all states will come in pairs in this way. O
23.2 Uses of Symmetry in Solving the Schrodinger Equation
23.2.1 Symmetric Double-Well Potential
Consider some symmetric double-well potential V' (x) and Hamiltonian
p?
H=—+V(x). (23.12)

T 2m

By definition, we have V(z) = V(—z), because the potential is symmetric.

This Hamiltonian is invariant under both IT and 8. The eigenfunctions can thus be chosen to be
real (from time-reversal invariance) and either even or odd under z — —z (from parity invariance).
We can argue that the ground state 1p(z) must be symmetric under z — —z (specifically, it has
no nodes); furthermore, it is physically apparent that the ground state should be peaked near the
bottom of each well. To see the first point, imagine that the ground state were antisymmetric; in
this case, we must have ¢(0) = 0. The squared slope of the wavefunction gives the contribution to
the kinetic energy. We can then cut the ground state apart at x = 0, negate one side, and then
glue the halves back together to give a symmetric function (with a small amount of smoothing at
the origin to make the new wavefunction continuously differentiable). The resulting wavefunction
has the same potential energy as the supposed ground state wavefunction, but has a smaller slope
at the origin, meaning it has lower energy than the ground state, which is a contradiction. Using
this approach repeatedly, we can argue that the ground state has no nodes.

What can we say about the first excited state ¢1(x)? Note that if we try to construct another
wavefunction with zero nodes, it will not be orthogonal to the ground state. The next-lowest energy
state will have the fewest nodes possible, from the argument above, and so we thus expect the first
excited state to be antisymmetric with a single node.

Classically, a particle moving in such a potential will oscillate around the bottom of one of the
two wells; it must choose a particular well to reside in. This is a classical example of what is called
a spontaneously broken symmetry.
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23.2.2 3D Particle in a Spherically Symmetric Potential

Consider a 3D Hamiltonian 2
2
H=— V2 +V(r). (23.13)

The spin decouples from the orbital angular momentum, and so we will ignore spin for now. We
see that [L, H] = 0, because [J, H] = 0 and [S, H] = 0. We can then choose the energy eigenstates
to be eigenstates of L? and L,. We then label the energy eigenstates by |n, £, m), where £ and m
specify the eigenvalues of L? and L., respectively. The wavefunction can then be written in the
form

Unem(x) = ([N, €, m) = Ry o(r)Yem(6, ). (23.14)
That is, the radial and angular parts of the wavefunction factorize. We will see the details of this
in a moment.

In polar coordinates, we can write

190 0 L?
2 _ 2,22 =
AV <'r 3r> + 2

r2 Or

23.15
(& 20y I i
N or2  ror r2’
Thus, the Hamiltonian acts as
h? d dR,, ¢ R20(0+ 1)
HRyo(r)Yom(0,0) = | —n—— [ r?—2 n nt | Yom
Rus(r)Vipn(0.) = |~ (5 ) + R e VOO RV
= Ean,E)/Z,m .
We can cancel Yy ,,, from both sides of this equation, and it becomes an ordinary differential equation
for Ry, o(r).
From the requirement that (n, ¢, m|n,¢, m) = 1, we have
/ dr T2R;74(T)Rn7g(r)/d9 Y/ (0,0)Yem(0,0) =1, (23.17)
0
1
giving
/ dr 12RY () Rug(r) = 1. (23.18)
0
We can understand this ODE more easily by making the change of variables
Ry y(r) = u"’ﬁ(r) : (23.19)
The radial equation then becomes
K2 d2u, g
— % a2 + %ﬁ(r)um@ = Enun’g, (23.20)
where R20(0 4 1)
+1
Ve =V —_— 23.21
W)=V + (23.21)
and -
/ dr |upe(r)> =1. (23.22)
0

This effective potential has a local minimum (for sufficiently non-singular potentials V' (7)), which
serves to localize the energy eigenfunctions.
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23.3 Approximation Methods
23.3.1 Time-Independent Perturbation Theory

Suppose that we have a Hamiltonian of the form
H=Hy+V, (23.23)

where Hp is a Hamiltonian with known spectrum and V is small. We can try to find the en-
ergy eigenstates and corresponding energy eigenvalues of the full Hamiltonian by treating V' as a
perturbation, and writing these quantities as a systematic power series in V.

As a formal bookkeeping device, let’s introduce a parameter A, and write

H = Hy+ AV . (23.24)

We will then expand in powers of A (ultimately, we are interested in A = 1, so we will set it to be
so at the end). Choose an orthonormal energy eigenbasis of Hy,

Hy|ng) = Enolno),  (molno) = dmeno - (23.25)
We then assume we can expand the energy eigenstates of H in the form
In) = |no) + Alny) + A2ng) + -+, (23.26)
and the corresponding energy eigenvalues in the form
Ey=Eyg+AEp1+NEpo+--- . (23.27)

If we plug these expansions into the Schrodinger equation, H|n) = E,|n), we will get an infinite
number of equations from matching the two sides order by order in A. Explicitly, we have

(H() + )\V)(‘Tlo) + )\]n1> +-0) = (En70 +AE, 1+ )(’n0> + )\\n1> + - ) . (23.28)
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