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Lecture 24 (Dec. 4, 2017)

24.1 Non-degenerate Time-Independent Perturbation Theory

We now consider the problem of approximating the spectrum for a Hamiltonian of the form

H = H0 + V , (24.1)

where H0 is a Hamiltonian with a known spectrum, and V is a “small” perturbation. This is
the problem we began discussing in the last lecture. As a bookkeeping device, we introduced a
parameter λ, and wrote

H = H0 + λV . (24.2)

This parameter will allow us to organize our power counting analysis, and we can set λ = 1 at the
end.

We have
H0|n0〉 = En,0|n0〉 , 〈m0|n0〉 = δm0,n0 , (24.3)

and we wish to solve
(H0 + λV )|n〉 = En|n〉 . (24.4)

We expand the energy eigenstates of H in the form

|n〉 = |n0〉+ λ|n1〉+ λ2|n2〉+ · · · , (24.5)

and the corresponding energy eigenvalues in the form

E 2
n = En,0 + λEn,1 + λ En,2 + · · · . (24.6)

This gives us

(H0 + λV )(|n0〉+ λ|n1〉+ · · · ) = (En,0 + λEn,1 + · · · )(|n0〉+ λ|n1〉+ · · · ) . (24.7)

24.1.1 The First-Order Energy Shift

We can compare the two sides of Eq. (24.7) order-by-order in λ. At O
(
λ0 , we get

H0|n0〉 = En,0|n0 ,

)
〉 (24.8)

which we already knew. At O
(
λ1

V n

)
, we find

| 0〉+H0|n1〉 = En,0|n1〉+ En,1|n0〉 . (24.9)

If we take the inner product of this equation with |n0〉, then we find

〈n0|V |n0〉+ 〈n0|H0|n1〉 = 〈n0|En,0|n1〉+ En,1 . (24.10)

The second term on the left equals the first on the right, and so we are left with

En,1 = 〈n0|V |n0〉 . (24.11)

This result makes sense, even classically: if we perturb the Hamiltonian, the leading-order shift in
the energy of an eigenstate is just the expectation of the perturbation in the unperturbed eigenstate.
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24.1.2 The First-Order Correction to the Eigenstate

Next( )we want to find |n1〉, the leading-order correction to the energy eigenstate. Rearranging the
O λ1 terms of Eq. (24.7), we have

(H0 − En,0)|n1〉 = (En,1 − V )|n0〉 . (24.12)

If we insert
1 =

∑
m0

|m0〉〈m0| (24.13)

on both sides of this equation, the left-hand side becomes

(H0 − En,0)|n1〉 =
∑

(H0 − En,0)|m0〉〈m0|n1〉 =
∑

(Em,0 − En,0)|m0〉〈m0|n1〉 , (24.14)
m0 m0

while the right-hand side becomes

(En,1 − V )|n0〉 =
∑
|m0〉〈m0|(En,1 − V )|n0〉 =

∑
|m0〉(En,1〈m0 m

m

|n0
0 m0

〉 − 〈 0|V |n0〉) . (24.15)

We now assert that we can choose 〈n0|n1〉 = 0; you can check that this is possible by considering
the normalization of |n〉. The left-hand side then becomes

(H0 − En,0)|n1〉 =
∑

(Em,0 − En,0)|m0〉〈m0|n1〉 , (24.16)
m0 6=n0

while the right-hand side becomes

(En,1 − V )|n0〉 =
∑
|m0〉(〈n0|V |n0〉δn0m0 − 〈m0|V |n0

m0

〉) = −
m

∑
|m0〉〈m0|V |n0〉 . (24.17)

0 6=n0

Comparing these expressions, we find

|n1〉 =
m

∑ |m0〉〈m0|V |n0〉

0 6=n0

. (24.18)
En,0 − Em,0

Note that this expression only makes sense when the energy eigenvalues of H0 are not degenerate.
We can now deduce a condition for the validity of perturbation theory: we demand that

〈n1|n1〉 � 1 so that the first correction to the energy eigenstates is small, i.e., that

|〈m0|V |n0〉| � |En,0 − Em,0| (24.19)

and that their ratio decreases rapidly enough with increasing m0.

24.1.3 The Second-Order Energy Shift

Now, we are prepared to compute E , the second-order correction to the energy. At O λ2n,2 in
Eq. (24.7), we have

H0|n2〉+ V |n1〉 = En,0|n2〉+ En,1

( )
|n1〉+ En,2|n0〉 . (24.20)

If we take the inner product with |n0〉, we can use

〈n0|H0|n2〉 = En,0〈n0|n2〉 , (24.21)
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to eliminate the first term from each side, leaving us with

���:0〈n0|V |n1〉 = En,1�〈n�0|n1〉 + En,2〈n0|n0〉 . (24.22)

Because |n0〉 is normalized, this gives us

V 2

En,2 = 〈n0
|〈n | |m 〉|| 〉 0

V |n1 =
∑

0

m0 6=n0

. (24.23)
En,0 − Em,0

Again, this only makes sense if the energy eigenstates of H0 are non-degenerate. To second order,
we then have ∑ |〈n 2

0
En = En,0 + 〈n0|V |n0〉+

|V |m0〉|

m0 6=n0

+O
En,0 − Em,0

(
V 3
)
. (24.24)

24.2 Examples of Time-Independent Perturbation Theory

24.2.1 Spin in a Magnetic Field

Consider a spin-1 in a magnetic field of the form2

B = Bxx̂ +B0ẑ , (24.25)

with Bx � B0 (assume that both Bx and B0 are positive). The Hamiltonian is

z z ~
H = −γB · S = −γ(B0S +BxS ) = −γ (B0σ

z +Bxσ
x) . (24.26)

2

To analyze this system using perturbation theory, we define

γ~
H0 = −

2
B0σ

z , V = −γ~Bxσ
x . (24.27)

2

To zeroth order, the energy eigenstates are |+〉 with energy −γ~B0/2 and |−〉 with energy +γ~B0/2.
To second order, the shift in the energy of the state |+〉 is

V + 2

∆E+ = 〈+|V +〉+
|〈−| | 〉||
E+ − E−

= −γ~Bx

2 ��
���:

0
〈+|σx|+〉 +

(
γ~Bx

2

)2 |〈−|σx|+〉|2

−γ~B0

=
γ~
2

(
− B2

x

(24.28)

.
2B0

)
Similarly, we find

γ~
∆E =−

2

(
B2

x .
2B0

)
(24.29)

Thus, the higher energy eigenvalue increases and the lower energy eigenvalue decreases. This
is a general property of non-degenerate, time-independent perturbation theory: the second-order
perturbation will always lower the energy of the ground state, because the numerator will be positive
(as it is the sum of squares) and the denominator will be negative (as the ground state has lower
energy than each other state).

We know the exact energy eigenvalues for this system are

γ~∓
2

√
B2

0 +B2
x ≈ ∓

γ~
2
B0

(
1 +

B2
x

2B2
0

+ · · ·
)

= ∓γ~
2
B0 +

γ~
2

(
∓ B2

x +
2B0

)
O
(
B3

x

)
, (24.30)

which exactly matches our calculation from perturbation theory.
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24.2.2 The Quadratic Stark effect

Consider an atom in a weak uniform external electric field. What is the effect on the ground
state energy? We will not worry about the issue of ionization, as the likelihood of ionization from
applying a small electric field is very small. Thus, we ignore the possibility that the electron can
escape from the atom.

We take the unperturbed Hamiltonian to be

p2
H0 = + V0(r) , (24.31)

2m

With V0 rotationally symmetric, e.g.
e2

V0 = − (24.32)
r

for the hydrogen atom. We then take the perturbing Hamiltonian to be

V = −eEz , (24.33)

where we have simply defined the z-axis to be the one pointing in the direction of the electric field.
The energy shift of the ground state is then∑ |〈n|V |0〉|2

∆E0 = 〈0|V |0〉+
n 6=0

+
E0 − En

· · · . (24.34)

The first term vanishes by symmetry arguments, using either parity or rotational symmetry. Thus,
the shift starts at second order. We then have

2

∆E0 = e2E2

n

∑ |〈n|z|0〉|

6=0

+
E0 − En

· · · . (24.35)

The second-order term is negative. We define α, called the atomic polarizability, such that

1
∆E0 = − αE2 +

2
· · · . (24.36)

We could have written this form down simply by symmetry arguments, but now we have a way to
calculate its value:

α = 2e2

n

∑ |〈n|z|0〉|2

6=0

. (24.37)
En − E0

In order to proceed further, we need to know the particular value of V0(r) for the system we
are trying to solve. For the hydrogen atom, it turns out that this calculation can be done exactly.
Dimensional analysis gives us most of the answer: we have

α ∼ e2 length2

. (24.38)
energy

The only length scale in the hydrogen atom is the Bohr radius a0, and the only energy scale is
e2/a0, which is a Rydberg. Thus, we have

e2a2
α ∼ 0 a

e2/a0
∼ 3

0 . (24.39)

For hydrogen, the exact answer turns out to be

α = 4.5a30 . (24.40)
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24.2.3 Van der Waals Interaction

An important interaction in chemistry and biology is the van der Waals force. Given two (hydrogen)
atoms in their respective ground states, separated by a distance r � a0 (with a0 the Bohr radius),
how does the total ground state energy depend on r?

Take the direction of separation to be the z-direction. We will take the two protons to be fixed
in position. The full Hamiltonian is

H = H0 +H1 ,

~2
H0 = −

2m

(
∇2

1 +∇2
2

)
− e2

r1
− e2

r2
,

H1 =
e2

r
+

e2

|r + r2 − r1|
− e2

|r + r2|
− e2

(24.41)

,
|r − r1|

where r is the vector separating the protons, and ri are the vectors separating the electrons from
their respective protons.

If r � a0, then we can expand H1 in powers of ri/r. This is a multipole expansion. The leading
term in this case is a dipole–dipole interaction,

e2
H1 =

r3
(x1x2 + y1y2 − 2z1z2) +O

(
1

r4

)
=
e2

r3
(r1 · r2 − 3(r1 · r̂)(r2 · r̂)) +O

(
1

(24.42)

.
r4

)
We then perturb in H1. The zeroth order ground state is

ψ 1 2
gd = ψgd(r1)ψgd(r2) . (24.43)

We then have
∆E(1) = 〈gd|H1(r1, r2)|gd〉

2 x1x2 + y
e 〈gd

−| 1y2 2z1z2
=

(24.44)
gd

r3
| 〉 .

Note that
〈gd|x1x2|gd〉 = 〈(gd)1|x1|(gd)1〉〈(gd)2|x2|(gd)2〉 = 0 , (24.45)

and similarly for all terms in ∆E(1). Thus, the leading-order energy shift comes in at second order.
We find

∆E(2) e4
=
r6

∑
k 6=0

|〈k1, k2|x1x2 + y1y2 − 2z1z2|0, 0〉|2
. (24.46)

E0,0 − Ek1,k2

Dimensional analysis tells us that

∆E(2) e4∼ −
r6
a40
Ry
∼ −e

2a50 , (24.47)
r6

where the Rydberg is e2/a0. The punchline is that there is a weak attractive interaction, which
is the van der Waals interaction. This is a purely quantum mechanical effect, arising because the
dipole–dipole interaction induces virtual transitions to the excited states in each atom.
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