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Lecture 26 (Dec. 11, 2017)

26.1 Harmonic Perturbations

We now study perturbations of the form

H1(t) = V e−iωt + V †eiωt . (26.1)

Here, V is some operator acting on the Hilbert space that depends on the degrees of freedom in
the system. We assume that V is “weak,” so that we can hope to treat it perturbatively.

If this perturbation acts for a long time, we expect that it will induce a transition from the
initially prepared state |i〉 to some final state |f〉 where the system has absorbed energy ~ω from
the perturbation, i.e.,

Ef − Ei = ~ω . (26.2)

In the last class, we computed the transition amplitude for an arbitrary time-dependent perturba-
tion at first order:

i
cfi(t) = −

ˆ t

dt′ 〈f |H t′
1|i〉eiωfi . (26.3)

~ 0

For the case of harmonic perturbations, we find

i
cfi(t) = −

ˆ t

dt′
[
〈f |V |i〉ei(ωfi−ω)t′ + 〈f |V †|i〉ei(ωfi+ω)t

′

~ 0

1

]
=

~

[
〈f |V |i〉

(
1− ei(ωfi−ω)t

ωfi − ω

)
+ 〈f |V †|i〉

(
1− ei(ωfi+ω)t

ω

)] (26.4)

.
fi + ω

As t→∞, |cfi|2 is appreciable if either ωfi−ω ≈ 0, i.e., Ef ≈ Ei+~ω (absorption), or if ωfi+ω ≈ 0,
i.e., Ef = Ei − ~ω (emission).

We now specialize to the case where ω is tuned so that

Ef − Ei ≈ ~ω . (26.5)

In this case, the second term in Eq. (26.4) is small compared to the first, so we can write

1
cfi(t) ≈ ~

〈f |V |i〉

(
1− ei(ωfi−ω)t

.
ωfi − ω

)
(26.6)

The transition probability is then

P 2
fi(t) = |cfi(t)|

1
=

~2
|〈f |V |i〉|2

∣∣1− ei(ωfi−ω)t
∣∣2

(ωfi − ω)2

=
1

~2
|〈f |V |i〉|2

sin2
(
(ωfi−ω)t

2

)
(
(ωfi−ω)t

(26.7)

t2

2

) 2 .

In this last line, we have simply used∣∣∣1− eiθ∣∣2 =
∣∣ (∣ ∣eiθ/2 e−iθ/2 − eiθ/2

)∣∣∣2
=

∣∣∣ θ∣−2i sin
2

∣∣∣∣2
= 4 sin2 θ

2
.

(26.8)
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Now, consider the function
sin2 tx

f(x, t) = , (26.9)
tx2

which is shown below:

x

t

f(x,t)

At x = 0, we have f(0, t) = t. As x → ∞, f(x, t) → 0. The function oscillates with a period
proportional to 1/t. As t → ∞, the function decays to zero very quickly, but f(0, t) = t → ∞.
Thus, this appears to be approaching something like a delta function. We can check this by noting
that ˆ ∞ sin2 tx

dx
−∞ tx2

=

ˆ ∞
−∞

d(tx)

t

sin2 tx

tx2

=

ˆ ∞ sin2 u
du

−∞

(26.10)

u2

= π ,

which we see is independent of t. We conclude that

sin2 tx
lim
t→∞

= πδ(x) . (26.11)
tx2

Thus,
1

lim Pfi(t) =
t→∞ ~2

|〈f |V |i〉|2πδ
(
ωfi − ω

2

)
t =

2π
f V i 2δ(ω ω)t . (26.12)

~ f2
|〈 | | 〉| i −

This may seem odd, because the result we found is that as t → ∞, the probability of transition
diverges to infinity, because it is proportional to t. The interpretation here is that there is a constant
transition rate,

Pfi
Rfi =

t
=

2π
f

~2
|〈 |V |i〉|2δ(ωfi − ω) . (26.13)
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In general, there will be several possible final states |f〉 to which H1 can induce a transition.
The total transition rate is then given by the sum over all final states |f〉 of this rate. We define
the density of states ρ(E) such that ρ(E) dE is the number of states between E and E+ dE. Then
the net transition rate out of the initial state is given by

Wi,out =
∑

Rfi
f

=

ˆ
2π

dEf ρ(Ef )

(26.14)

f
~2
|〈 |V |i〉|2δ(ωf − ωi − ω) .

Changing variables in the delta function, we reach

π
Wi,out =

ˆ
2

dEf ρ(Ef ) δ
~
|〈f |V |i〉|2 (Ef − Ei − ~ω) . (26.15)

This famous result is known as Fermi’s Golden Rule.

26.1.1 The Photoelectric Effect

Consider an electron in a hydrogen atom interacting with an external EM field. This system has
Hamiltonian

H =

(
p− e

cA
)2

2m
− e2

, (26.16)
r

where A is the external vector potential. Take the vector potential to be of the form

A = A0 cos(ωt− k · r) , (26.17)

and assume that A0 is weak. We can then write

p2

H =
2m
− e2

r︸ ︷︷ ︸
H0

− e

2mc
(p ·A + A · p) +

e2
A2 . (26.18)

2mc2

where H0 is the hydrogen atom Hamiltonian. The final term, proportional to A2, does not con-
tribute to the problem we are considering at first order in perturbation theory, so we will simply
drop it here.

It is convenient to work in Coulomb gauge, ∇ ·A = 0. In this gauge,

(p ·A + A · p)ψ = (−i~∇ ·A + 2A · p) = 2A · pψ . (26.19)

Thus, we can use
H = H0 +H1 (26.20)

with
e

H1 = −
mc

cos(ωt− k · r)A0 · p

= − e (26.21)
ei(ωt−k·r) + e−i(ωt−k·r) A0 p .

2mc
·

The first term gives the transition rate

(
proportional to δ(Ef

)
− Ei + ~ω), while the second term

gives the transition rate proportional to δ(Ef − Ei − ~ω).
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If we take the atom to initially be in its ground state, then only the second term can contribute,
so Fermi’s Golden Rule gives

2π
R0→f =

~
∑
kf

∣∣∣〈kf | e A i
0

mc
· pe− k·r

2
|0〉
∣∣

Here,

∣2δ(Ef − E0 − ~ω) . (26.22)

|0〉 denotes the ground state of the hydrogen atom, with wavefunction

1
ψ0(x) = 〈x|0〉 = e−r/a0 , (26.23)

1/2
πa30

where a0 is the Bohr radius. The ket

( )
|kf 〉 is a plane wave state with wave vector kf , which describes

the electron that is kicked out of the atom by the perturbation.
We can compute the matrix element in the transition rate by putting the system in a box of

side length L, which gives

e

2mc
A0 ·

ˆ
d3x

e−ikf ·r

L3/2
(−i~∇)

e−r/a0(
πa30
)1/2 =

e d
A0

2mc
·
ˆ 3x

L3/2

(
i~∇

(
e−ikf ·r

)) e−r/a0(
πa30
)1/2

=
e~ A0 · kf

2mc L3/2
(
πa30
)1/2 ˆ d3x e−ikf ·re−r/a0

=
e~

2mc

A0 · kf
L3/2

(
πa30
)1/2 8π

(26.24)

.
a
( 2

0 k2 + 1/a2f 0

)
Note that we have ignored the factor of eik·r in this matrix element; this was not an accident. For
typical wavelengths involved in photo-ionization, |k| � |kf |.

For the sum over final states, we make the replacement

∑
→ 3 f

k

ˆ
d3k

L

f

. (26.25)
(2π)3

The logic is that, in a box of size L, the set of allowed momenta has spacing 2π/L, and so each
differential element in the integral is of the form

dkx
, (26.26)

(2π/L)

which gives the form of the replacement above.
Putting everything together, we then have

2π
R0→f =

~
L3

L3

ˆ
d3kf
(2π)3

(
e~

2mc

)2 (A0 · kf )2

πa30

(8π)2
δ4

a20

(
k2 + 1/a2f 0

) (Ef − E0 − ~ω)

e2~
=

d

2m2c2a50

ˆ
kf k

2
f dΩ

(2π)3
(A0 · kf )2(8π)2(
k2f + 1/a20

)4 δ

(
~2k2f
2m

− E0 − ~ω

)

=
e2kf dΩ

2mc2a50~

ˆ
(2π)3

(A0 · kf )2(8π)2

(26.27)

(
k2 + 1/a2f 0

) ,4
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with kf determined by energy conservation. The only angular dependence is in A0 · kf , so using

ˆ
dΩ cos2

4π
θ = (26.28)

3

we reach the final result,
16e2k3fA

2
0

R0→f =
3mc2~a50

1(
k2 + 1/a2f 0

) . (26.29)4
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