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Lecture 9 (Oct. 4, 2017)

9.1 Spin-1
2
in an AC Field

Consider a spin-1 system in a time-dependent magnetic field. The Hamiltonian is2

ge
H = − S )

m
·B(t . (9.1)

2

We will consider a particular class of time-dependent magnetic fields, which we can write in the
form

B(t) = V0ẑ +B1(cos(ωt)x̂ + sin(ωt)ŷ) . (9.2)

We have previously studied the case where B1 = 0.
In the case B1 = 0, there are two energy eigenstates — the spin-up and spin-down states along

the z-axis — that have an energy splitting of

∆E =

∣∣∣geB∣ 0~
.

2m

∣
(9.3)

Now that we are considering a field with nonzero B

∣
1, w

∣∣
e expect the system to be able to absorb

energy from the oscillating component of the field to transition between the two energy eigenstates
of the static field.

We will analyze this problem in the interaction picture. A seemingly sensible choice is to regard
the B0 term of the Hamiltonian to be H0, the part of the Hamiltonian for which the resulting time
evolution is already understood. We write

H = H0 + V (t) , (9.4)

where
ge

H0 = −
2m

SzB ,

V (t) = − ge (9.5)
S B

m
⊥ · (t) .

2
⊥

Here, we have defined
S := Sxx̂ + Syŷ ,⊥

(9.6)
B := B1(cos(ωt)x̂ + sin(ωt)ŷ) .⊥

We define
0

ω =

∣∣∣geB
0 ∣ ,

2m

∣
w

∣∣ (9.7)

so that e have
H0 = ω0Sz

∣
. (9.8)

(Note that we are taking e < 0 so that the signs work out here.) The time-evolution operator due
to this part of the Hamiltonian is

~U0(t) = e−iH0t/ . (9.9)

The equation of motion in the interaction picture is

d
i~

dt
|ψI(t)〉 = VI(t)|ψI(t)〉 , (9.10)
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where
VI(t) = U0

†(t)V (t)U0(t)

iω0Szt/~ −iω0Szt/~= e V (t)e

geB
= − 1

(9.11)

iω z z
e 0S t/~ ~(Sx cos(ωt) + Sy sin(ωt))e−iω0S t/ .

2m
Before evaluating this directly, it is convenient to define

S± = Sx ± iSy . (9.12)

These are called the ladder operators. Note that they are Hermitian conjugates of one another. We
can now compute

eiφσ
z/2S+e−iφσ

z/2 =

(
φ

cos
2

+ iσz sin
φ

2

)
S+

(
cos

φ

2
− iσz sin

φ

2

)
= S+

(
cos

φ

2
− iσz sin

φ 2

2

= S+(cosφ

)
(9.13)

− iσz sinφ)

= S+eiφ .

Here, in the first line we have expanded the exponentials, using the fact that the Pauli matrices
square to the identity. In the second line, we have used the fact that σz anticommutes with both
σx and σy. Note that

σx + iσy =

(
0 1

) )
0 2

i

(
0 −i

+ = .
1 0 i 0

(
0 0

)
(9.14)

This is why these operators are called ladder operators (S+ specifically is the raising operator).
Taking the Hermitian conjugate of Eq. (9.13), we have

z z
eiφσ /2S−e−iφσ /2 = S−e−iφ . (9.15)

Now we can return to the calculation of VI(t). We have

geB1
VI(t) = −

2m
eiω0Szt/~

(
S+eiωt + S−e−iωt

2

)
e−iω0Szt/~

= −geB1
( (9.16)

S+ei(ω0+ω)t + S−e−i(ω0+ω)t

m

)
.

4

9.1.1 Resonant Drive

First, let’s consider the simple case where the external frequency is ω = −ω0. This case is called
“resonant drive.” In this case, the potential in Eq. (9.16) simplifies to

geB1
VI = −

4m

(
S+ + S−

)
= −geB1

Sx , (9.17)
4m

which is time-independent. The interaction picture time-evolution operator is then

geB

UI(t) = ei
1 Sxt

2m~ . (9.18)

geBThis operator rotates states about the x-axis of spin space by an angle 1 t. The frequency of2m~
rotation,

ωR =

∣∣∣geB∣ 1

2m

∣∣∣∣ , (9.19)
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is called the Rabi frequency. Note that the time-evolution operator,

−
(

ω tRx
) = e−iωRS t/~ i

UI(t = e
σ

2

)
x

, (9.20)

does not oscillate with a frequency of 2π
ωR

, but rather 4π
ωR

,

UI

(
t+

4π
=

ωR

)
UI(t) . (9.21)

This operator has periodicity twice that of any observables in the system. What happens after a
time 2π

ωR
? At this time, we have

UI

(
2π

=
ω

)
x

= e−iπσ

R
−1 . (9.22)

Thus, any observables will oscillate at the Rabi frequency, but if we were able to measure the phase
of a state, we would find that it oscillates at half the Rabi frequency.

Imagine that we start in a spin-up state, i.e.,

1|ψI(0)〉 →
(

0

)
, (9.23)

where the arrow indicates that we are representing the state as a vector. At time t, we then have

|ψI(t)〉 → e−iωRtσ
x/2

(
1
0

)
=

(
cos

(
ωRt

2

)
− iσx sin

(
ωRt

2

))(
1
0

)
=

(
cos
(
ωRt

2

)
−i sin

(
ωRt

2

)
−i sin

(
ωRt

2

)
cos
(
ωRt

2

) )(1
0

)

=

(
cos
(
ωRt

2

)
−i sin

(
ωRt

(9.24)

.
2

)

Thus, after a time t = π

)
, we haveωR

0|ψI(π/ωR)〉 →
(
−i

)
, (9.25)

and after a time t = 2π , we haveωR

|ψI(2π/ωR)〉 →
(
−1
0

)
, (9.26)

where we see that the state has picked up a phase of π. We find that the state oscillates; this
behavior is referred to as Rabi oscillation.

9.1.2 Off-Resonant Drive

Up until now, we have been working in the case of resonant drive. What happens if we’re off
resonance, i.e., ω 6= −ω0? In this case, even though we went to the interaction picture, we still
have a time-dependent Hamiltonian that we don’t know how to solve, because VI(t) is still time-
dependent. It seems like we have gained nothing.
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The issue is that we made a particular choice for which part of the Hamiltonian H would be
H0, but this was not actually the most convenient choice. Let’s instead choose

˜ ˜H = H0 + V (t) , (9.27)

where
H̃0 = ωSz ,

(9.28)
Ṽ (t) = −γ(B Szeff + B (t)⊥ · S ) .⊥

Here, we have defined
ω

Beff := B0 +
γ
,

γ :=
ge (9.29)

.
2m

Now, let’s work in the interaction picture with these choices. Going to the interaction picture is
˜going to a rotating frame, that rotates with H0. Previously, we went to a frame that rotated about

the z-axis at frequency ω0; now we are going to a frame that rotates about the z-axis at the external
frequency ω.

We compute

˜ ˜ ˜ ˜VI(t) = U0
†(t)V (t)U0(t)

1
= iωSzt/~e

[
− BeffS

z γB
γ − z (9.30)

iω ~S+eiωt + S−e− t e−iωS t/ .
2

The

( )]
first term in brackets is unaffected by the time evolution, because Sz commutes with the

exponentials outside the brackets. The second term in brackets, along with the time-evolution
exponentials, looks exactly like the calculation we did in Eq. (9.16), but with the frequencies in all
of the exponentials exactly matched. Thus, we find

ṼI(t) = −γBeffS
z − γB1S

x . (9.31)

This is time-independent, and so we now declare the problem solved. The spin precesses about the
direction of

B̃ = (B1, 0, Beff) . (9.32)

These are modified Rabi oscillations, with a frequency of

ωR = γ
√
B2 +B2

eff 1 . (9.33)

9.2 Path Integral Formulation of Quantum Mechanics

Time evolution in the Schrödinger picture is given by

|ψ(t)〉 =
∑

ca′(t)
a′

∣
a′
〉
, (9.34)

where the |a′〉 form an energy eigenbasis, and

∣

ca′(t) = e−iEa′ (t−t0)/~ca′(t0) . (9.35)

We can consider these particles in position space, and define

ua′(x) =
〈
x
∣∣a′〉 (9.36)
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to be the energy eigenfunctions. Then the position-space wavefunction is given by

~ψ(x, t) =
∑

e−iEa′ (t−t0)/ ca′(t0)ua′(x) . (9.37)
a′

We can rewrite this as ∞
ψ(x, t) =

ˆ
ddx′ K

(
x, t;x′, t0

)
ψ
(
x′, t0

)
, (9.38)

−∞

with
K
(
x, t;x′, t0

)
=
∑〈

x∣∣ ~a′
〉
e−iEa′ (t−t0)/

〈
a′ x′ = x U(t, t0) x′ . (9.39)

a′

The object K(x, t;x

∣∣ 〉 〈 ∣∣ ∣∣ 〉
′, t0) is called the propagator.
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