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INFORMAL NOTES

DISTRIBUTIONS AND THE FOURIER TRANSFORM


Basic idea: 

In QFT it is common to encounter integrals that are not well-defined. Peskin 
and Schroeder, for example, give the following formula (p. 27, after Eq.  (2.51)) 
for the two point function 〈0 |φ(x)φ(y)| 0〉 for spacelike separations (x − y)2 = 
−r2: 

−i 
� ∞ peipr 

D(r) =  
2(2π)2r −∞ 

dp � 
p2 + m2 

. 

If this integral is defined in the usual way as 

� Λ peipr


lim dp � ,

Λ→∞ −Λ p2 + m2 

then it does not exist. The integral can be defined by putting in a convergence 
factor e−ε|p|: ∞ peipr e−ε|p|

lim dp � . 
ε→0 −∞ p2 + m2 

But how does one know whether a different convergence factor would get the 
same result? One way to resolve these issues is to treat the ambiguous quantity 
as a distribution, rather than a function. All tempered distributions (to be 
defined below) have Fourier transforms, which are also tempered distributions. 
Furthermore, we can show that the ε-prescription used above is equivalent to 
the tempered-distribution definition of the Fourier transform. 

Distribution: 

A distribution is a linear mapping from a space of test functions to real or 
complex numbers. (An operator-valued distribution maps test functions into 
operators.) 

Test Functions: 

The space of test functions {ϕ(t)} determines what type of distribution one is 
discussing. The test functions for tempered distributions belong to “Schwartz 
space,” the space of functions which are infinitely differentiable, and the func
tion and each of its derivatives fall off faster than any power for large t. The 
Gaussian is a good example of a Schwartz function. Any function in Schwartz 



� 

8.323 LECTURE NOTES 3, SPRING 2008: Distributions and the Fourier Transform p. 2 

space has a Fourier transform in Schwartz space. (The Fourier transform of a 
Gaussian is a Gaussian.) 

Functions as Distributions: 

Distributions are sometimes called generalized functions, which suggests that 
a function is also a distribution. This is not quite true, but a wide range of 
functions can also be thought of as distributions. Given any function f(t) which  
is piecewise continuous and bounded by some power of t for large t, one  can  
define a corresponding distribution Tf by 

� ∞ 

Tf [ϕ] ≡ dt f(t)ϕ(t) . 
−∞ 

Since ϕ(t) falls off faster than any power, this integral will converge. Note that 
because the class of ϕ(t)’s is very restricted, the class of possible f(t)’s is very  
large. 

Fourier Transform: 

For any function f(t) which is integrable, meaning that � ∞ 

dt |f(t)|
−∞ 

converges, define � ∞ 

f̃(ω) ≡ dt e−iωtf(t) . 
−∞ 

Fourier Transform of a Distribution: 

To motivate the definition, suppose f(t) is integrable, and consider � ∞ 

Tf̃ [ϕ] =  f̃(ω)ϕ(ω) dω 
−∞ � ∞ ∞ 

= dt e −iωt f(t) ϕ(ω) dω 
−∞ −∞ � ∞ 

= dt f(t) ϕ̃(t) 
−∞ 

= Tf [ϕ̃] . 

Note that these integrals are absolutely convergent, so there is no problem 
about interchanging the order of integration. So, for any distribution T , define 
its Fourier transform by 

T̃ [ϕ] ≡ T [ϕ̃] .


http:integration.So
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Note that any function f(t) which is piecewise continuous and bounded by some 
power of t for large t can define a distribution, and can therefore be Fourier 
transformed as a distribution. 

Relation to � convergence factor: 

Suppose f(t) is not integrable, and so does not have a Fourier transform. Sup
pose, however, that there exists a continuous sequence of “regulated functions” 
fε(t) which are integrable for ε > 0, which satisfy 

|fε(t)| < |f(t)| , 
and which for each t satisfy 

lim fε(t) =  f(t) . 
ε→0 

Example: fε(t) =  f(t)e−ε|t|. Note that the regulator that we used for the 
two-point function at spacelike separations has this property. To show: if we 
Fourier transform fε(t) and take the limit ε → 0 at the end, it is the same as 
the distribution-theory definition of the Fourier transform. 

Proof: 

The distribution-theory definition of the Fourier transform is 

T̃f [ϕ] ≡ Tf [ϕ̃] 

� ∞ 

= dt f(t) ϕ̃(t) . 
−∞ 

The ε prescription is to use 

Tf 
∗[ϕ] ≡ lim Tf̃� 

[ϕ] . 
ε→0 

We need to show these are equivalent. Use 
� ∞ 

Tf 
∗[ϕ] = lim dω f̃ε(ω)ϕ(ω)

ε→0 −∞ � ∞ � ∞ 

= lim dω dt e−iωt fε(t)ϕ(ω)
ε→0 −∞ −∞ 

� ∞ 

lim dt fε(t)ϕ̃(t) . 
ε→0 −∞ 

=




� 

� 
ε ε 
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If we can take the limit inside the integral, we are done! 

Last step is proven with Lebesgue’s Dominated Convergence Theorem: If hε(t) 
is a sequence of functions for which 

lim hε(t) =  h(t) for all t, 
ε→0 

and if there exists a function g(t) for  which  

dt g(t) 

converges, and for which 

g(t) ≥ |hε(t)| for all t and all ε, 

then � �

lim dt hε(t) =  dt h(t) .

ε→0 

Note, by the way, that the existence of the integrable bounding function g(x) 
is absolutely necessary. A simple example of a function hε(t) for  which  one  
CANNOT bring the limit through the integral sign would be a function that 
looks something like: 

Analytically, this function can be written as 

1 if  1 < t <  1 + 1
hε(t) =  

0 otherwise  .  

Note that the square well moves infinitely far to the right as ε → 0, so hε(t) → 0 
for any t. But the integral of the curve is 1 for any ε, and hence it is 1 in the 
limit. The Lebesgue Dominated Convergence theorem excludes functions like 
this, because any bounding function g(t) must  be  ≥ 1 for all t, so  g(t) cannot 
be integrable. 

The theorem does apply, however, to 
� ∞ 

lim dt fε(t)ϕ̃(t) . 
ε→0 −∞ 
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Take 

hε(t) =  fε(t) ϕ̃(t) ,


h(t) =  f(t) ϕ̃(t) ,


and


g(t) =  |f(t) ϕ̃(t)| .


Bottom Line: 

The ε prescription used by physicists is equivalent to the unambiguous defini
tion of the Fourier transform in tempered-distribution theory. That is, if the 
function to be Fourier-transformed f(t) is not integrable, one can proceed as 
long as one can find an integrable regulator fε(t) such that 

|fε(t)| < |f(t)| , 

and for each t,

lim fε(t) =  f(t) .

ε→0 

One can then Fourier transform fε(t) instead. In the general case one cannot 
take the limit ε → 0 immediately, but one must leave ε in the expression for 
the distribution. Only after the distribution is evaluated for a particular test 
function can the limit ε → 0 be taken. Remember, for example, that we wrote 
the Fourier transform of the Feynman propagator as 

i 
. 

p2 − m2 + iε 

With the ε in place one can carry out integrals involving the propagator, and 
then one can take the limit ε → 0 at the end. If one tried to set the ε term 
to zero immediately, then the poles in the propagator would lead to ill-defined 
integrations. 


