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The procedure described for quantum electrodynamics last lecture can be readily generalized to other theories: ∑ ∑ 
D = d − Ef ∆f − Viδi, (1) 

f i 

with ∆f > 0. For a renormalizable theory, all δi ≥ 0. That is, all the interactions are renormalizable. This means 
only for a finite set of classes of diagrams characterized by {Ef } is D ≥ 0, and D is always bounded by d. 
Therefore, all superficial divergences can be canceled be a finite set of counterterms of the form 

D∑ ∏ 
EfAj ∂

j ϕf (2) 
j=0 f 

where the Aj are divergents constants. From the facts that ∆f > 0 and D ≥ 0, this set of interactions are all 
renormalizable: [Ai] ≥ 0. Therefore, all divergences can be absorbed into redefinitions of the couplings, masses, 
and fields, provided the Lagrangian contains all the renormalizable interactions allowed by symmetries, in order to 
make sure the overlapping divergences cancel. 

Remarks: 

1.	 For quantum electrodynamics, there is no need to enumerate all the diagrams. We only need to write 
down all possible counterterms consistent with gauge symmetry. 

2.	 Non-renormalizable theories, with some δi < 0, require an infinite number of counterterms. 

3.	 In a super-renormalizable theory, each counterterm contains only a finite number of divergent terms, 
when expanded in perturbation theory. 

4.	 Generally any divergence allowed by symmetries will occur. 

5.	 If the regulator for ultraviolet divergences does not violate a given symmetry, the divergences violating 
that symmetry will not occur. This is particularly important and subtle for gauge symmetries, because of 
the need of gauge fixing. For quantum electrodynamics, the Ward identities ensure this. For non-Abelian 
gauge theories, the generalized Ward identities arising from the BRST symmetry ensure this. 

6.	 There are situations in which one cannot find any regulators which preserve a symmetry, and so the 
symmetry can be violated when the regulator is removed. This leads to the concept of an anomaly: a 
symmetry of the classical Lagrangian which is not respected in quantum theory. If this happens to a 
gauge symmetry, it leads to an inconsistency. 

4.2.3: Ultraviolet Divergences and Renormalization in Coordinate Space 

Our discussion has been so far restricted to momentum space, with loop momenta as p −→ ∞, leading to ultraviolet 
divergences. One would normally expect from that uncertainty principle that ultraviolet divergences are associated 
with short-distance phenomena. This can be made manifest by calculating the Feynman diagrams in coordinate 
space, leading to the result that counterterms must be local. This also leads to the result that in systems at a finite 
temperature T , the counterterms are independent of T . We will not give a complete treatment, but we will briefly 
highlight the local nature of the counterterms. We will use a scalar field for illustration. In the free theory, 

L0 = −
2

1 
(∂ϕ)

2 − 
2

1 
m 2ϕ2 .	 (3) 
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If we try to compute operators like ϕ2(x), ϕ3(x), etc., we find that they are not well-defined, containing ultraviolet 
divergences. For example, consider 

ϕ(x)ϕ(y) = G(x − y)+ : ϕ(x)ϕ(y) : (4) 

where the first term is the contraction and the second term is the normal ordering. As x −→ y, the first term is 
singular: G(x − y) ∼ 

(x−y
1
)d−2 . The second term is regular in this limit. Hence, 

ϕ2(x) = C01+ : ϕ2(x) :, (5) 

where C0 ∼ 1 , for a short-distance regulator ϵ. Similarly, 
ϵd−2 

ϕ4(x) = C̃01 + C1 : ϕ
2(x) : + : ϕ4(x) : . (6) 

In the interacting theory, we consider, for example, 

Lint = λϕ4 , (7) 

or more generally 
Lint = λO, (8) 

where O is some composite operator built from ϕ. The general physical amplitude is given, in the interaction 
picture, by 

⟨T (X)⟩ = 
⟨ 
T (Xei ́

 
ddx λO(x)) 

⟩ 
(9) 

0 

where X is a collection of fields (operators), and the right-hand side is evaluated in the free theory. At the nth 
order in perturbation theory, the contribution is 

λn 
ˆ n∏ 

i=1 

dd xi ⟨T (XO(x1) . . . O(xn)⟩0 . (10) 

There are two types of divergent loops. Considering, for example, O = ϕ4 : 

. (11) 

The first type corresponds to a single propagator attached to the same vertex, and the second case corresponds to 
O(x)O(y)|x�y . The first type of divergence can be takencare of by normal ordering O itself: 

ϕ4(x) = C̃01 + C1 : ϕ
2(x) : + : ϕ4(x) : . (12) 

Here, the first term is canceled by Λ0, and the second term is cancelled by a mass renormalization. The second 
type of divergence can also be dealt with using normal ordering: 

x , x y 

: ϕ4(x) :: ϕ4(y) : 
∣∣ 
x�y 

= 
ϵ

1 
8 
1 + 

ϵ

1 
2 
: ϕ2(y) : + 

ϵ

1 
4 
: (∂ϕ)

2 
(y) : + 

ϵ

1 
4 
: ϕ4(y) : + 

ϵ

1 
2 
: ϕ6(y) : + . . . (13) 

Here, ϵ = |x − y| is a short-distance regulator. The first four terms are not integrable, but can again be canceled 
by adding 

A0 + A1ϕ
2 + A3ϕ

4 + A2(∂ϕ)
2 (14) 

counterterms to the Lagrangian. In general, ∑ 
: O(x) :: O(y) : x�y = Cn(ϵ) : On(y) :, (15)|

n 

where the Cn(ϵ) ∼ 1 are ordinary functions, and the : On(y) : are normal-ordered local operators. Here, ϵ� 

α = 2∆ − ∆n, (16) 

where [O] = ∆ and [On] = ∆n. This expansion is known as the operator product expansion, or the OPE. The 
structure of the OPE is such that the counterterms are always local. The OPE will be discussed in more detail in 
the problem set. 
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