
8.421 Homework Assignment #8
Spring 2012, Prof. Wolfgang Ketterle

Due Wednesday, April 25, 2012

1. [4 Points] Convolution of Line Shapes

When two separate physical processes both contribute to the line shape, the resultant line shape is the convolution
of the distributions. Say D1 (ω − ω0) and D2 (ω − ω0) are the normalized line shapes of the first and second type
of process. The resultant line shape is then their convolution

DR (ω − ω0) =

∫ ∞
dω′D1 (ω − ω′)D2 (ω′ − ω0)

−∞

a) (1 point) Consider that D1 and D2 are both Lorentzian functions with FWHMs (full widths at half-maximum)
Γ1 and Γ2, respectively. Show that DR is also Lorentzian and find its FWHM. (Hint: use the Fourier convolution
theorem)

b) (1 point) Do the same if D1 and D2 are Gaussian and Γ1 and Γ2 are r.m.s. deviations.

c) (2 points) Find the FWHM of a Gaussian with r.m.s. deviation Γ/2. Find the r.m.s. deviation of a Lorentzian
with FWHM Γ.

2. [8 points] Intensity Distribution Due to Spontaneous Emission

An atom of total angular momentum J has a spontaneous radiation rate A. It radiates to a lower level with
angular momentum J ′ = J − 1. The problem is to find the rates for the various allowed transitions, i.e. the
fraction of the radiation that goes into each of the possible transitions (J,m) −→ (J ′,m′). The rates can be found
by applying the following considerations:

• The sum of the rates out of each state (J,m) must equal A.

• The sum of the rates into each state (J ′,m′) must equal A× 2J+1 .2J′+1

• An unpolarized mixture of radiators in level J must emit equal intensities of light with each of the three
polarization components.

• The rate for a transition (J,m) −→ (J ′,m′) must be the same as for (J,−m) −→ (J ′,−m′).

For J = 2, J ′ = 1, designate the transitions by letters as follows:

a: m = 2 −→ m′ = 1

b: m = 1 −→ m′ = 1

c: m = 0 −→ m′ = 1

d: m = 1 −→ m′ = 0

e: m = 0 −→ m′ = 0

1. Find the rates for a though e, and present your results on a figure.
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2. Find the rates for a though e, using the Wigner-Eckart theorem. (Clebsch-Gordan coefficients can either
be worked out from first principles, or taken from a table in one of the quantum mechanics or spectroscopy
texts.)

Note that the transition rates calculated here are important in experiments involving laser excitation. Because
emission and absorption rates are proportional, the distribution of emission rates yields the relative strengths of
the transitions, i.e. their relative rates of excitation.

3. [8 points] Saturation Spectroscopy
This problem guides you through the concepts of saturation spectroscopy. This is one of the techniques to perform
Doppler-free spectroscopy, i.e. to extract a narrow line (with the natural linewidth) in a gas with a broad velocity
distribution. It nicely illustrates the combination of homogenous and inhomogeneous line broadening. Saturation
spectroscopy is frequently used to lock lasers to atomic lines. You should not get into nasty integrals for this
problem. The drawn lineshapes should clearly show the basic features, but don’t have to be exact.

a)Homogeneous broadening
Consider a dilute gas of density n composed of atoms with resonant frequency ω0 and linewidth Γ. The gas is
exposed to monochromatic light of frequency ωL = ω0 + δ and intensity I = s ISAT where ISAT is the saturation
intensity. Let us ignore the effects of the motion of the atoms, i.e. consider temperature T = 0. What are the
densities of atoms in the ground state n1 and the excited state n2, including the effect of saturation? What is
the cross-section for absorption? The gas is in a box of length L along the direction of the incoming light. What
fraction of the light is absorbed? (This is a small fraction, so don’t worry about the effect of light attenuation on
the saturation of the sample).

b)The Bennet hole
Now, let’s endow these atoms with a mass m and a temperature T . Let the incoming light have a wavevector kL

along the z-axis. What is the population density distribution in the ground state n1(vz) as a function of vz, the
component of velocity in the z-direction? You should find that the light “burns a hole” (known as the Bennet
hole) in the distribution of absorbers. What is the position of the hole? How do the width and depth (relative to
the population for s = 0) vary with saturation parameter s?

c)Inhomogeneous broadening
Consider that we sweep the frequency of the incident laser ωL and measure the (small) absorption of the beam.
Determine the fraction of the light absorbed as a function of s and δ and compare with its value at s = 0 (you
don’t need to solve the integral). For high temperatures (kLv̄z � Γ), what is the width of the absorption line?
Does saturation affect the width?

d)Saturation spectroscopy
To actually get some benefit from saturating the gas, we introduce a second laser beam. i) We can add a weak
probe beam at frequency ωp with wavevector kp. What is the absorption of this beam, including the effects of
the saturating beam (kL, ωL)? Again, just write the integral, and take the length of the box along kp to be L.
Draw the absorption line shape, identifying the position and width of its features. ii) We can also just retroreflect
the original beam. Draw the population distribution n1(vz) for ωL 6= ω0 and ωL = ω0. Identifying the depth of
the Bennet hole(s), draw the lineshape of absorption of the retroreflected beam (i.e. we scan ωL). What is the
width of the central feature (at δ = 0)?
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