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PROFESSOR: We want to start talking about a seemingly simple but very complex system in

physics, the harmonic oscillator. So the next part is actually due to Professor Vladan

Vuletic, who worked out the topic very nicely about, how precisely can you measure

frequencies?

And I don't need to remind you that some of the most accurate measurements in all

of physics are done by measuring frequency. It's actually a kind of unwritten rule. If

you want to measure something precisely, make sure that you find a way that this

quantity can be measured in a frequency measurement. Because frequencies,

that's what we can measure-- with synthesizers, with clocks, and such. So therefore,

the question, how precisely can you measure frequency, is a question which is

actually relevant for all precision measurements.

Well, we know we have Fourier theorem. If you have an oscillator which oscillates

for a time delta t, we have the Fourier theorem which says we have a finite width of

the frequency spectrum delta omega, or there is the spread of frequency

components involved in such a way that delta omega times delta t is large or equal

than 1/2. The case of 1/2 is realized for Gaussian wave packets.

And of course, Fourier theorem should also-- this Fourier limit should remind you of

Heisenberg's uncertainty relation. Of course, Fourier limit and Heisenberg

uncertainty relation are related because what Heisenberg expressed turns out to be

simply the limit due to the wave nature of matter.

OK. So I brought the clicker because I want you to think about some seemingly

simple question. The first question is whether the uncertainty delta omega times

delta t larger than 1/2, does this uncertainty hold for purely classical systems?
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So think about it and answer in your clicker. A is 1 and B-- oh, I should say that.

So we now assume we have a purely classical-- you can even think a mechanical,

large mechanical object, purely classical harmonic oscillator. You can observe it for

time delta t, or it oscillates for time delta t. Can you determine its frequency better

then this uncertainty suggests?

19, 20. Just make up your mind. As I said, your responses are not recorded, so

nothing to risk. OK.

Yes. OK, the majority gave the right answer. The situation is that the answer is yes,

if you have a good signal to noise ratio.

So what happens is, if you-- we have to bring in the fact that we have noise. So if

you have a wave formed, there may be noise around it. And if you look at the

spectrum, the spectral components have a certain width. And this width, delta

omega, is given by Fourier's theorem by the time delta t you had for observation.

But as you see, you can determine the center of this spectral peak with an accuracy

delta omega, which may be much better than the [? width ?] delta omega. And the

rule of thumb is that you can split a line by your signal to noise ratio. So typically, the

accuracy of a measurement is whatever the width of the spectrum is, and then you

can split the line by the signal to noise ratio. This is called splitting the line.

Factor of hundred is usually regarded as straightforward. But if you want to go to

larger than that, it becomes a challenge. Because even if you have a very good

signal to noise ratio, you really have to make sure that you know the line shape, that

you know that it is, for instance, symmetric, and that the line center of the observed

shape is really where the frequency is.

I will give you some examples in a few moments. But before that, I would like to

continue our discussion whether we can measure the angle of frequency to better

than the Heisenberg limit in case of a quantum-mechanical oscillator. So the

question is, can you measure the frequency of a quantum-mechanical harmonic

oscillator in a time delta t to an accuracy which is better than the limit of
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Heisenberg's uncertainty? OK, your vote, please.

All right. OK. Why don't we hold that for a second and proceed to the next question

which is the same? But now, instead of a quantum-mechanical harmonic oscillator,

we take something we are very familiar with-- an optical laser-- and we observe a

laser pulse lasting a duration delta t. So same situation, but instead of observing a

quantum-mechanical harmonic oscillator, we observe a laser pulse. For the laser,

can we measure the frequency of the optical radiation better than this equality tells

us?

OK. At least people are consistent because the first thing I wanted to tell you is that,

is the laser actually a classical harmonic oscillator or quantum harmonic oscillator?

Well, we use a quantum description of light and the laser is the population of

photons in the single note of the electromagnetic field. So in that sense, the laser is

fully quantum. But in the limit that the laser is many, many photons-- and some of

you know about coherence states. If there's a coherent state with a large photon

number, the laser is actually the classical limit of an electromagnetic field.

So maybe that tells me that the answers to questions 2 and question 3 should

probably be the same. And I want to say more about it. So at least in this class, you

were consistent. I have often seen a big discrepancy in the answers between

question 2 and question 3.

OK, so the answer is yes. So both for the laser-- I first explain the laser to you, and

then we go back to the pure quantum system, thing has actually certain subtleties.

But for the laser, it is obvious, at least if I tell you how I want to measure it, because

I can take the laser and create a beat note with another very stable laser. And I

record this beat note on a photodiode.

I can realize by making this other laser, the local oscillator stronger and stronger, I

can create a beat note which is larger and larger and corresponds to a macroscopic

electric current which can be measured with very high precision.
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So you can realize an arbitrarily high signal to noise ratio by using a strong local

oscillator. And then you can actually say the photocurrent, which comes out of the

photodiode, is actually-- you can regard this microscopic current as purely classical.

And then of course, the answer to the first question applies. So that takes care of

question 3 by mapping it actually on question 2.

But now by saying that the laser also has a quantum-mechanical limit and I'm not

changing anything, we realize that probably the answer to question 2 should also be

yes. So let's, therefore, ask our self, what is the situation when the Heisenberg

uncertainty relation applies?

Well, one is we have to be really careful. It predicts the outcome of a single

measurement on a single quantum system. Let me write that down.

Or if the Heisenberg uncertainty relation sets a limit, how well we prepare a

quantum system. It's about a single quantum system, and then we perform a single

measurement.

So in a sense, if we would say all you have is a single photon, which is a very

special quantum system. You have a single photon and you measure the frequency

of the photon only once. Then your will find the limit, which is the Heisenberg limit.

You cannot, with a single measurement on a single photon, determine the accuracy

of the frequency better than this.

And of course, you can get higher accuracy by doing repeated measurements or by

using many photons. We talk about it more in 8.422, but I just want to remind you, if

you have n uncorrelated photons. In other words, we perform n measurements on n

different objects, then the signal to noise ratio is-- just by Poisson distribution,

square root n. And therefore, the resolution for the frequency of the photons is

better than the Heisenberg or the Fourier limit by 1 over the square root n.

Some of you-- and actually, in Professor Vuletic's group, there is research on it that

if you have correlated-- well, in his case, correlated atoms. But if you had correlated

photons, then you can even do better. You can reach what is sometimes called the

4



Heisenberg limit where you are better than the limitation given by Fourier's theorem

or by the Heisenberg uncertainty relation by a factor of 1/n.

OK. So as far as the question 2 where the quantum harmonic oscillator is

concerned, we would say the answer is yes, if you have is single photon at

frequency omega 0, which interacts with the quantum harmonic oscillator at

frequency omega 0.

However, the answer would, even in that case, be no if you have harmonic oscillator

levels and you take a photon and by a nonlinear process excite the n-th level.

So you have a single photon now. You can resolve the energy delta E of this level. A

single photon, a single quantum object, you can define the energy-- that's

Heisenberg's uncertainty relation. The energy is determined to that precision. But

your frequency omega of the optical pulse is n times omega 0 using nonlinear

process. And then you can determine the frequency of the harmonic oscillator, even

for a single quantum system and a single photon with a precision which is 1/n times

better. So you have to be also careful, but I don't want to beat it to death now, to

distinguish between the accuracy at which Heisenberg's uncertainty relation maybe

limits the measurement of an energy level. And how this is related to the frequency

of the harmonic oscillator.

And by going sort of immediately to the n-th level, you can, of course, measure the

distance between two levels more accurately because you have increased your

[INAUDIBLE]. Any questions?

AUDIENCE: Sorry, I just got a little confused about when yes means one thing and no means

one thing. So you're saying that you can beat the uncertainty relation in questions 1,

2, and 3 if you can put it in a way where you get good signal to noise?

PROFESSOR: OK, I gave you-- sorry for being complicated, but the physics is complicated. I try to

give it to you in different layers. I first looked at the classical limit, which is pretty

clear-cut. Then, I used a laser. The laser has a classical limit where the answer is

the same as in the classical limit. But then we can talk also in the laser in the limit of
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single photons.

And then I said, OK, the single photon interacting with a single quantum system, this

is really when it is quantum. And if you have a two-level system and you

[INAUDIBLE] it with a single photon, then you can make a measurement which is

limited by this inequality.

But then I said there is a caveat. And this is if you bring in a nonlinear process.

So if your bring in a nonlinear process, we can go up n steps. We can drive-- we

can, by some nonlinearity, drive the harmonic oscillator from the ground state to the

n state. Then, everything we have said about a single photon and the measurement

of the resonance and such applies to this photon. But the energy level of the

harmonic oscillator has now been measured with n times higher precision because

we can divide by n.

So the answer is yes, yes, then quantum mechanics we cannot make it more

accurate unless we pull some tricks. And nonlinear physics would be a trick.

So in general, the situation where you really limit it by this inequality where your

precision is limited would really only apply to a single photon, a single quantum

physics, and linear physics. Other questions?

AUDIENCE: Yes. Maybe just the phrasing.

AUDIENCE: What does delta t mean for a single photon measurement?

PROFESSOR: Delta t could be the time you allow yourself to make the measurement. You have a

measurement apparatus. You switch it on, you switch it off. Eventually, you want to

get out of grad school. I mean, you don't want to take an infinite amount of time for

the measurements. There's always a window, delta t, and there's a fundamental

limit. The duration of the measurement limits the precision of the measurement.

OK. The next thing I want to discuss is the analogy, but also the differences

between a harmonic oscillator and a two-level system. So what is a two-level

system?
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Well, it's a system with two levels. What is a harmonic oscillator?

Well, it's a system which has an infinite number of equidistant levels. I will tell you

tell you later in this course when we talk about the AC and DC stark effect, you talk

about the polarizability and light scattering that you can regard the atom or the

electron in the atom as a harmonic oscillator. An atom scatters light exactly in the

same way as the charge which is connected to some support structure with a

spring. How an oscillating charge would scatter light?

Well, you know of course, the atom is a two-level system. And the sort of model I

make for the electron as a harmonic oscillator at a single resonance frequency,

which is 100% exact in the limit of [? low ?] laser power.

Well, this realize is a harmonic oscillator. So therefore, what I'm telling you by this

example, that there are situations where a two-level system and a harmonic

oscillator are the same. Or, create the same [? observance, ?] create the same

physics. Do you have any idea when the two systems may look the same or when

the two systems react exactly in the same way to, for instance, external radiation?

AUDIENCE: At very low temperatures?

PROFESSOR: At very low temperature? Well--

AUDIENCE: [INAUDIBLE].

PROFESSOR: Yes. Well, we assume these are atoms and we always start in the common state.

So let's assume we have 0 temperature. We have an atom. And maybe what I'm

asking is, if I excite the atom and I said, there may be a situation where the atom is

a two-level system but it reacts like a harmonic oscillator, when does it break down?

AUDIENCE: When the [INAUDIBLE].

PROFESSOR: Exactly. When we go beyond the perturbative limit when we use a strong excitation.

So in other words-- and I like to give you the answer before I give you the full

explanation, which now comes. If you start out in the ground state, you can see at 0

7



temperature, we have mainly all the population there.

If you start now driving the system, we put-- and I will say a little bit more about it. A

little bit into the excited state. But it is the nature of a harmonic oscillator when you

put something into the excited state that immediately a little bit goes into the second

excited state. And this is, of course, something which you can only do in a harmonic

oscillator but you cannot do in a level system. So to the extent that we have weak

excitation and we can neglect the excitation in higher levels. To that extent, a two-

level system and harmonic oscillator are identical.

Actually, what I'm saying appears trivial, but I really want you to think about it. It's

actually a very profound statement. When can you describe a quantum-mechanical

system as a harmonic oscillator?

For weak excitation when all what matters is that you have put a small fraction of

the system into the first excited state. And you immediately realize that the feature

which distinguishes a two-level system from a harmonic oscillator is the

phenomenon of, let's say, saturation. You cannot go higher.

If you do not saturate a two-level system, it behaves like a harmonic oscillator. And

therefore, it behaves completely classical.

OK, let's work that out a little bit. I'll give you some examples.

So the phenomenon of a two-level system is it has saturation. The maximum energy

you can put in is one quantum. Whereas, a harmonic oscillator can never be

saturated. Just think of the harmonic oscillator potential parabola. You can drive the

system as high as you want. So you can go in this classical language to arbitrarily

large amplitudes.

So what I just mentioned where the equivalence holds-- I always want you to have

an example in mind-- is the Lorentz model for an atom where you describe the atom

as an electron connected with a spring to the nucleus. And as we will see in a few

weeks, this model gives the identical answer, identical to the quantum-mechanical
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treatment for probabilities like the polarizability and the index of refraction for gas of

atoms or molecules.

So if you have a two-level system, we can often think we have an s, ground state,

and then p, excited state. And if you do a weak excitation, we have sort of a wave

function, which is all, lets say, positive one side-- one sign. And then we

[INAUDIBLE] a p orbital, which has a note which is positive and negative. And now

we have the positive-negative and the positive and the-- there is the resonance

frequency between the two. And that together results in an oscillating dipole.

So the simple model of superimposing an s state and a p state at a certain

frequency gives us an oscillating dipole, which is the realization of a harmonic

oscillator. But the harmonic oscillator, it oscillates.

And this is, of course, valid for sufficiently small excitation. So the question we have

already addressed in the discussion, what is small?

So "small" means population of higher-excited states is negligible. So in other

words, as long as the excitation of the first excited state is small, then we can

neglect the excitation in the second excited state, which is even smaller. So let me

kind of bring out the difference between a two-level system and a harmonic

oscillator a little bit more by discussing the situational of cavity QED.

Let's assume we want 100% population in the first excited state. If you have a

harmonic oscillator and the system is prepared in the first excited state, this is also

called Fock state with one quantum of excitation. And it's a rather special state

where people have worked hard to generate it because you cannot realize it in a

harmonic oscillator. And let me sort of explain that in the following way.

If you have a harmonic oscillator, you start and you would drive it. And you try to put

100% in the n equals 1 state. Before you have accumulated 100% in the n equals 1

state, you drive it already to higher states. And of course, you know when you start

driving a harmonic oscillator, classical or quantum-mechanically, you create a

coherent state, which is a superposition of excited states.

9



So we would say an n equals 1 state cannot be excited. We usually get a coherent

state, which is a superposition of many, or at least several, states. Whereas in a

two-level system, we can just do a [INAUDIBLE] pulse. And to put all the atoms in

the excited state is nothing special. Whereas, to have a cavity filled with photons

and selectively excite the n equals 1 state, this is special because it's not easy. It's

not straightforward.

So in cavity QED, you can do it if you have anharmonicities or nonlinearities. So let

me explain that.

Well, it's an anharmonicity or some form of-- so if you have a situation where you

have your harmonic oscillator, but the energy levels are not equidistance. So the

difference between this first and second excited state are not the same, then you

can drive the system. You can prepare Fock state in n equals 1 like in a two-level

system. And you're out of resonance to drive it to higher states.

So here, what you utilize is a sort of two-level system. And that allows you to create

those special state which are regarded as non-classical, very special states of the

harmonic oscillator.

And one way how you can create it-- well, if you have an empty cavity, each photon

has the same energy. Then you have an equidistant harmonic oscillator. But if you

put, for instance-- you add an atom to the cavity, and the radiation is interacting with

the atom, then you'll get-- we'll talk about it later. The atom and the photons interact

with the Rabi frequency, and then you get a splitting, called the normal mode

splitting. And this level splitting is proportional to the Rabi frequency. And we'll

discuss it later, but many of you know that the Rabi frequency scales with the

square root of the photon number.

So therefore, you have a splitting which is proportional to square root 1, square root

2, square root 3. And you have a spectrum which is no longer an equidistant

system. And then you can create non-classical states of the photon field, non-

classical states of a harmonic oscillator.
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So anyway, I thought I wanted to bring it up at the beginning of the class, because a

lot what we are discussing in this class is we'll rediscover in many situations-- in

atoms, in the light, in the way how light and atoms interact, harmonic oscillators and

two-level systems.

Often, I say they are the same. They behave in the same way. But I hope this

introductory [? mark ?] tells you, when can you think in one limit and when do you

have to apply the other limit? Any questions about that? Yes, Nancy.

AUDIENCE: So are we saying here that without changing the [INAUDIBLE] of the harmonic

oscillator, we cannot use it as a harmonic oscillator? Like [INAUDIBLE]? Because

when you put an atom in that [INAUDIBLE] changed, it was no more a harmonic

oscillator. The levels changed.

PROFESSOR: Maybe all I'm saying is this is a pure harmonic oscillator. And in a pure harmonic

oscillator, I think it's-- I don't know a proof of it, but it seems impossible to prepare a

system in the first excited state because every attempt to put an excitation into the

system would carry it higher up.

You would create a wave packet. You would create a superposition. So you have to

do some thing. You have to break the degeneracy of the spectrum of the harmonic

oscillator.

Of course, what you can do is you can put in an atom. You can use the atom as an

aid to just put in exactly one photon into your cavity, and then you can remove the

atom. Then you are back to an ideal harmonic oscillator, but you have overcome

the limitation of the harmonic oscillator in preparing certain states.

Another take-home message you may take from this discussion is harmonic

oscillators-- yes, we have quantum harmonic oscillators. But even the quantum

harmonic oscillator follows a classical description. So the real quantumness-- what

makes quantum optics quantum optics and cavity QED a wonderful example of

quantum physics is the physics embedded in a two-level system. That we can put

one quantum excitation into something, exactly one is as much quantum as you can
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get.

This is realized in a two-level system and this is related to the phenomenon of

saturation. You can saturate a two-level system, but you cannot saturate a

harmonic oscillator. So with that, let me make the transition to another simple

system. And we want to spend some time on it. And these are rotating systems.

So a system which rotates. Well, what do you think? Will it behave, using the

discussion we just had, more like a classical system or more like a quantum-

mechanical system?

Of course, I gave you a very special definition. What brings out quantum mechanics

in a system?

The harmonic oscillator is always linear. You can drive it as hard as you want. You

drive it hundred times stronger and the reaction is hundred times more. Everything

is linear. The quantumness of a two-level system comes from saturation. What

about a rotating system? Something which can go in a circle.

AUDIENCE: [INAUDIBLE]. So you're not going to have this degeneracy [INAUDIBLE].

PROFESSOR: OK, very good. You're immediately applying what is the spectrum. The spectrum is

not equidistant, so it should bring in a difference. It's sometimes hard to ask a

simple question without giving the answer away. But what I had in mind was a

gyroscope, a gyroscope which is precessing.

And what I wanted to sort of lead you with the question is, if you have something

which rotates, the amplitude is limited. A rotating object, let's assume a magnetic,

classical magnetic moment. It can have a precession angle which is 180 degrees,

but that's a maximum.

In other words, the rotating system when you excite it has a maximum amplitude,

exactly as a two-level system. So that's what a rotating system and a two-level

system-- actually then, I'm now specializing on more rotating gyroscope. If you have

a free rotator, this, of course, can rotate with [INAUDIBLE] angular momentum and
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the excitation spectrum would not be bound. So I think I have to rephrase the

question the next time I teach the class.

I wanted to ask you here about a special rotating system, which is a precessing

gyroscope. So rotating system.

If you think about precessing gyroscope, it has a bound on the amplitude it can be

excited. So what I want to show you, today and in the next lecture, is the motion of

classical magnetic moments.

When you think about the motion of classical magnetic moments, think about a

compass needle, a magnetized needle which has angular momentum. And then,

the system is acted upon with a magnetic field. So this is our system. And if angular

momentum, magnetic moments, and torque come into play, we have the physics of

classical rotation.

But the excitation spectrum here is limited because you can flip a compass needle

and this is a maximum excitation. When the North Pole points in the opposite

direction, that's the maximum excitation you can give it. So therefore, it has a limited

amplitude of its excitation, unlike a harmonic oscillator. And at this point you may

say, but maybe somewhat similar or analogous to a two-level system.

But the surprising result is-- at least it was surprising when I first learned about it.

That it's not just somewhat analogous to a two-level system, it actually captures

exactly a lot of the properties of the dynamics of a two-level system. So let me write

that down.

The motion of classical magnetic moments provides a model. It's actually an exact

model which captures essentially all features of the quantum mechanical two-level

system. I want to show you today and the next lecture the concepts or Rabi

frequency, of generalized of resonant Rabi frequency, all of that you find in the

classical motion of a magnetic moment.

Or, for instance, the physics of rapid [INAUDIBLE] following, [INAUDIBLE]. A lot of

physics we would usually associate with the quantum system, we find it here in a
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purely classical system.

What aspects of the two-level system will we not find? Any ideas? Will?

AUDIENCE: Spontaneous emission?

PROFESSOR: Spontaneous emission, definitely. Yes. But actually, in a two-level system, in a

quantum-mechanical two-level system, which we drive with a single frequency,

spontaneous emission is also missing. Spontaneous emission, as we will discuss

later, only comes into play when we say the excited state of the system interacts

with many, many modes and not just the one mode we apply.

And typically, if you go to high frequency, we have an optical oscillator, we cannot

avoid spontaneous emission. Whereas, for a quantum-mechanical spin 1/2

interacting with microwaves, we can completely eliminate spontaneous emission. So

spontaneous emission, I would say, comes into play at high frequency. So that's

correct. But there is one aspect even at low frequency, one aspect of quantum

mechanics which we cannot capture.

AUDIENCE: Having different G in a magnetic field?

PROFESSOR: Different G factors, yes. That's, as we see, a more quantitative aspect. But there is

one very important feature about quantum mechanics you will never get in a

classical system.

AUDIENCE: Spin?

PROFESSOR: Spin.

AUDIENCE: [INAUDIBLE].

AUDIENCE: [INAUDIBLE].

PROFESSOR: OK. I think you're skirting around. It's a quantum measurement process and

projection. If you perform a measurement on a compass needle, it can be at any

angle. But if you do a measurement on a quantum system, you do a projection.
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After the measurement projects a system in either spin up or spin down. So the

probabilistic nature, the projection occurring in a quantum measurement is, of

course, absent in a classical system.

But when you say spin 1/2 and quantum levels, this is sort of implied in it. If there

are only two levels, there's only up and down and not an infinite number of angles.

So what we will actually see is that we find an exact analogy between the classic

system and the quantum mechanical system when we compare expectation values.

But the individual measurement, the individual quantum measurement because it is

projective is different.

OK, with that motivation, we are now talking about magnetic resonance. And we will

later do a fully quantum mechanical description, but to get the concepts and also

understand the analogies to a classical system, we want to understand what

happens when we have a classic magnetic moment in magnetic fields. And that

includes static fields, but then we want to excite the system. We want to drive the

system, and this is time-varying fields. And we will assume that the fields are

spatially uniform.

So let me just remind you of the obvious equations of motion that also allows me to

introduce the nomenclature. The interaction energy between a classical magnetic

moment mu and the magnetic field is mu dot B. The force is the gradient of the

interaction energy, but it is 0 for uniform fields. So therefore, we don't need to look

at the force. But the next thing which we then have to consider is the torque.

And when we think about the classical magnetic moment, you can think about a

compass needle. But magnetic materials are complicated. If I think about the

simplest magnetic moment, I think about a loop of current I and area A. And that's

sort of the classical model for magnetic moment. So we have a magnetic moment

mu.

And if we now add a magnetic field, which is at an angle, we have a torque. But just

to make sure the torque is something which is nothing else than the Lewin's force

on the electrons. But since electron is forced to go in a circle, we don't have to look
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at the Lewin's force microscopically. We just immediately jump to the torque. And

the torque is what describes the dynamics of the system. So we have torque.

When we have torque, we want to formulate the problem in terms of angular

momentum. And our equation of motion is the classical equation of motion that the

derivative of angular momentum is given by that.

Now, what makes those equations immediately solvable-- and to find the very easy

limit is that the magnetic moment of the system we assume is proportional to its

angular momentum.

Well, if you have a mechanical object which goes in a-- if you have a charged object

which circles around a central potential, then you, of course, find immediately that if

it moves faster, it has more angular momentum. It has a larger magnetic moment.

So we use that as the defining equation for what is called the gyromagnetic ratio.

Which, of course, is very closely related to G factors, which we define later on for

atoms.

The gyromagnetic ratio is the ratio between magnetic moment and angular

momentum. And then, we find that the derivative of angular momentum is given by

this equation. And this is now an equation which you have seen in classical

mechanics and in many situations. The solution of that is a pure precession. The

motion is pure precession of the angular momentum around the axis of the

magnetic field.

So in other words, we have the axis of the magnetic field. We have the angular

momentum. And at a constant tipping angle, we have the tip of the angular

momentum precesses around the magnetic field. And the precession happens with

an angular frequency which is called the Larmor frequency.

The Larmor frequency, the frequency of precession, is proportional to the magnetic

field and the gyromagnetic ratio. So let me give you an example for an electron. The

gyromagnetic ratio is 2 pi times 2.8 megahertz per Gauss.

And we've discussed last class what it means when I take out 2 pi. Because the
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Larmor frequency is an angular frequency. And angular frequency is not measured

in Hertz because there is a 2 pi factor. And I just make it obvious where the 2 pi

factor is hidden.

Now, this is for the electron. But if you have an ensemble of classical charges, an

[INAUDIBLE] distribution of classical charges-- well, with the same charge to mass

ratio, you find that the gyromagnetic ratio is 1/2 of that. And this here is the Bohr

magneton, which we will use quite often in this course.

The third example is the proton. The proton is heavier, has a heavier mass. About

1,000 times heavier than the electron. And therefore, the Larmor frequency is not

megahertz per Gauss, it is kilohertz per Gauss. Any questions? These are more

definitions and setting the stage.

Let me make a note. It's one of the many notes I will make in this course about

factors of 2. There are factors of 2. If you miss it, you qualitatively miss the physics.

And let me in that context by talking about precession frequencies and magnetic

moment, explain a factor of 2 which is related to the G factor of the electron.

So if you have the electron which has spin of 1/2, in units of the Bohr magneton,

what is the magnetic moment of the electron? 1/2, 1, or 2? What is the magnetic

moment of the electron? 1/2, 1, or 2?

AUDIENCE: 2.

AUDIENCE: [INAUDIBLE].

PROFESSOR: I should have a clicker question on there. No. It's 1. 1 Bohr magneton. And let me

sort of show the level structure of it.

This is [INAUDIBLE] energy. You have spin up and you have spin down. The

difference is 2.8 megahertz per Gauss. And if you ask, what is the precession

frequency of an electron in a magnetic field? It's 2.8 megahertz if the field is 1

Gauss.
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And if you want to drive the rotation, if you want to change the precession angle--

we'll talk about that in great detail-- you better drive the system at 2.8 megahertz.

But 2.8 megahertz is the difference of plus 1.4 and minus 1.4.

And therefore, the energy of the electron in a magnetic field is either plus or minus

1.4 megahertz per Gauss, and 1.4 is 1 Bohr magneton. The magnetic moment of

the electron is 1 Bohr magneton. So precesses at 2.8.

OK, but let us contrast this with a classical current distribution, which has 1 unit of h

bar, which means the magnetic moment is 1 Bohr magneton exactly as the electron

has.

Well, quantum mechanically means it has three different level-- minus 1,

[INAUDIBLE] 0, and 1 because it has 1 unit of angular momentum. Since the system

has 1 Bohr magneton, when the system stands up or stands down, the difference

between spin up and spin down is 2.8 megahertz per Gauss.

OK, my question now is, what is the precession frequency of this classical charge

distribution which has 1 unit h bar of angular momentum? And I've just shown you

the level structure.

If you will now create a wave packet of those three levels, which means-- a wave

packet of the three levels means you have a spin which points in one direction.

What is the precession frequency of that system?

Let's have a clicker question. So what is the precession frequency? Oops, what

happened? So let me give you three choices. 2.4, 1.4, or 0.0 megahertz per Gauss.

So please vote for A, B, or C.

Yes, it's 1.4. So they have the same magnetic moment. Quantum mechanically, you

would see here is a G factor of 2. Here's a G factor of 1. But the easiest explanation

is it precesses. The precession is a beat note between two energy levels.

Here, you have the beat note between those two energy levels happens at 1.4

megahertz. Therefore, when you want to drive it with an external radiation, you
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have to drive it at 1.4 megahertz. You want to drive it level by level.

Whereas, this system has a beat note between two levels, and the difference is 2.8

megahertz. Anyway, whenever you get confused about factors of 2 with magnetic

moment and precessing system, just think about those two simple examples. They

have all the factors of 2 hidden in the simplest example possible.

All right. We have a rotating system. have a system which precesses. So we want to

learn about rotations in general. And what I want to show you is that under very

general circumstances, we can solve the equation, the dynamics of the system, by

going into rotating frame.

You all know about rotating wave [INAUDIBLE] rotating wave approximations that's

in quantum physics. I'm simply talking about a classical system and I want to solve

the equations for the classical system by going to rotating frame. And I want to show

you where this is exact and where not.

OK, so this is actually something which we do in undergraduate, in 8.01-- definitely,

in 8.012. But let me remind you when we have a rotating vector which rotates with a

constant angular frequency, then the time derivative of the vector is the cross

product. But now we want to allow-- so this is when the vector is constant and it just

rotates. But now, we want to assume that there is something else. There is an

arbitrary time dependence of the vector in the rotating frame. So we have a vector

which changes according to A dot [INAUDIBLE]. But it also rotates.

And that means-- and this is exactly shown in classical mechanics that in the inertia

frame, the time derivative is the sum of the two. It is the change of the vector in the

rotating frame plus omega cross A. So it has this equation. Has the simple two

limiting cases that if there is no change in the rotating frame, then we retrieve the

kinematics of pure rotation.

When our rotating frame is not rotating or it rotates at 0 angular frequency, then of

course the two time derivatives are the same. But anyway, what I derived for you is

an operator equation that the time derivative in the rotating frame is related to the
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time derivative in the inertia frame in this way. And now we want to apply it to our

angular momentum L dot.

So this is just applying the operator equation to our angular momentum L. And now

we want to specialize that-- we just discussed that the time [INAUDIBLE]. I'm just

looking for a sign problem, but it's sometimes hard to fix sign problems at the board.

The creation of motion for the angular momentum was that it's L cross gamma B.

Oh, I changed the order. There is no sign problem. And then, I add this. So if we

now describe our precessing, classical magnetic moment, which has the equation of

motion that L dot is L cross gamma B, if you describe it in a rotating frame, then the

equation of motion gets modified as follows.

Now, what happens is we-- let me factor out the gamma. Gamma L cross B is the

real field. So what we observe is that when we go into a rotating frame-- and this is

exact-- that the real magnetic field gets replaced by an effective magnetic field.

Because there is an extra term added to it, which we can call a fictitious magnetic

field.

So this is just an exact transformation of our equation of motion for a precessing

system into the rotating frame. And now, of course, we haven't made any

assumptions what the rotating frequency is. But if you would choose the rotating

frequency to be the Larmor frequency minus gamma times B, then our effective

magnetic field vanishes.

And then we know, because there is no magnetic field, that the angular momentum

is constant in the rotating frame. In other words, the dynamics of the system means

that L is constant in a rotating frame. And if you want to know what happens in the

original, in the [? lab ?] frame, in the inertial frame, we just have to rotate back.

OK, that's something we want to take advantage of. But we fully apply it in the next

class. I have only a few minutes left today, and I want to spend those few minutes to

talk about another factor of 2.
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Now, let me ask you the following. If you have an electron in a magnetic field, well,

you know that the electron goes in circles. It's the cyclotron motion of the electron.

Now, just give me one second. I forgot to mention something for the classical

system. For a classical charge distribution, the Larmor frequency is the charge of

the particle. In case of the electron, it's e. Divided by 2m times B. So the Larmor

frequency is e over 2m times B.

So therefore, we know that when we have an [INAUDIBLE] of positive and negative

charges, and there is an effective magnetic moment, that this magnetic moment

would precess at the Larmor frequency which is given by this expression. So who

knows what the frequency of the cyclotron motion is? So when we have a free

electron, what is the frequency at which it revolves? At which it goes in circles?

AUDIENCE: 2 times the Larmor frequency.

PROFESSOR: It's two times the Larmor frequency.

OK, I just wanted to mention it. There's an important factor of 2 which you should

know about.

In previous classes, I spent 10 or 20 minutes to teach you about a few of them

which is called Larmor's theorem. But I summarized the argument on the atomic

physics wiki and I can't say more here in class than I've written on the wiki. So

please read on our atomic physics wiki about Larmor's theorem.

Larmor's theorem shows you that under certain assumptions, you can transform

away the effect of a magnetic field by going to the Larmor frequency. That looks

exactly like what we have discussed here. But what we discussed here was exact.

There was no approximation. Whereas, the derivation of Larmor's theorem, which

talks about charge distributions-- not about magnetic moments, about charge

distributions-- has to make certain approximations.

So just want to point your attention to that there are two derivations about Larmor

frequency. One is exact, which I gave to you. There is another one which is
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Larmor's theorem, which applies to isolated charges which is not exact. But they

both conclude that you can transform away the effect of a magnetic field by going to

rotating frame at the Larmor frequency.

And the fact that Larmor's theorem is not exact is actually illustrated by this example

of a free electron where you have a factor of 2. And this comes because the term

which you neglect when you derive Larmor's theorem is negligible if the situation is

that you have electrons and charges forming magnetic moments.

But if you have a free electron, the neglected term is exactly 1/2 of the dominant

term. And that is why the cyclotron frequency is twice about Larmor frequency. So

never confuse the cyclotron and the Larmor frequency. And the factor of 2 is not

related to a G factor of the electron or such. It's really the difference between the

physics of a free charge and the physics of a magnetic moment. Any questions?

OK, well, then we are finished for today. A reminder, no class on Wednesday, but

we have class on Friday in the different classroom.
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