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Prof. Wolfgang Ketterle	 Febuary 13, 2011 

Assignment #1 

Due: Friday, February 22, 2013 

1. Properties of the coherent state |α) 

(a) Compute the overlap of two coherent states (α|β), for arbitrary complex α and β. 

(b) Prove that the coherent states form an over-complete basis, that is 

d2α |α)(α| = I .	 (1)
π 

A B A+B+[A,B]/2(c) The BCH Lemma states that	 e e = e for operators A and B satisfying 
[A, B] = c, where c is a complex number. Use this lemma to prove that the displacement h m 
operator D(α) defined by D(α)|0) = |α) may be written as D(α) = exp αa† − α∗ a . h m 

(d) Let the electric field operator be Ex(t) = E0 a(t) + a†(t) sin(kz), where E0 = a 
lω/V E0 is the average electric field created by one photon inside the cavity vol­

ume V . For a freely evolving coherent state |α) = |α(t)), compute the average elec­
tric field (Ex) = (α|Ex(t)|α) and the root-mean-square deviation of the electric field a a	 a 

(ΔE2) = (α|E2(t)|α) − |(Ex)|2 . Why is (ΔE2) independent of time and field x x	 x

strength |α|? Why does this result hold even for the vacuum state α = 0? 

(e) In quantum mechanics, there is no unique choice for a phase operator. To better under­
stand the phase properties of a state, here we give you one possible definition of a phase 

iθprobability distribution. For a coherent state |α) with α = |α|e it can be defined as 
being  1 

P (φ) = | (n|e −inφ|α)|2 ,	 (2)
2π 

n  2π
which can be shown to obey the normalization condition dφP (φ) = 1. Show that 

0 
this definition gives the expected results for coherent states, which for large values of α 
approach classical states. Show that this definition gives an undefined phase for number 
states. 

(2)(τ)2. The Hanbury-Brown Twiss experiment and g

The second-order coherence function g(2)(τ) is often measured in the laboratory using an 
experiment first developed by Hanbury-Brown and Twiss in the 1950’s, for studying the 
light from distant stars. This experiment involves mixing light from the input source with 
the vacuum, |0), on a 50/50 beamsplitter, and measuring the intensity-intensity correlation 
function at the output using two detectors and a coincidence circuit: 
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This problem examines how this experiment measures g(2)(τ), and what results are obtained 
for different input states of light. 

a) Let a, a†, and b, b† be the raising and lowering operators for the two modes of light input 
to the beamsplitter, and let the unitary transformation performed by the beamsplitter 
be defined by 

a + b 
a1 = UaU† = √ (3)

2 
a − b 

b1 = UbU† = √ . (4)
2 

For light input in state |ψ), you are given that the output of the coincidence circuit is a 
voltage 

† †Vψ = V0(ψ, 0| a1a1b b1 |ψ, 0) , (5)1

where V0 is some proportionality constant, and |ψ, 0) denotes a state with |ψ) in mode 
“a” and |0) in mode “b”. In other words, the voltage is the average of the product of the 

(2)(τ ),two detected photon signals. Show that Vψ gives a measure of g

† †(a a aa)
g(2)(τ ) = (6)

(a†a)2 

up to an additive offset and normalization. 
(2) isb) The classical expression for g

(2) (Ī(t)Ī(t + τ ))
g (τ ) = . (7)cl (Ī)2 

(2)
Prove that g (0) ≥ 1. It is helpful to use the fact that ((Ī(t) − ( Ī(t)))2) ≥ 0.cl 

c) Compute g(2)(τ ) for the following input light states: 

|ψ1) = |α) = e−|α|2/2 √ 
αk 

|k) (a coherent state) (8) 
k!

k 

|ψ2) = |2) (the number state n = 2) (9) 

∑
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d) Compute g(2)(τ ) for the following input light states, as a function of α: 

|α) + | − α)|ψ3) = √	 (10)
2 

|α) − | − α)|ψ4) = √	 (11)
2 

Do either of these two states show non-classical second-order coherence? Why (or why 
not)? 

3.	 States of light: pseudo-probability distribution plots 

Pseudo-probability distributions such as the Q(α) function provide useful and insightful ways 
to depict quantum states of light. In this problem, we explore some important states and their 
depictions. Due to the technical challenge of analytically calculating Q(α), it is satisfactory 
to give numerical answers for some parts of this problem. In particular, the Q(α) function is 
defined as 

Qρ(α) ≡ (α|ρ|α) ,	 (12) 

and it is readily computed numerically by using the fact that any pure state ρ = |ψ)(ψ| can 
be represented using 

∞ 

|ψ) = 
n=0 

cn|n) , (13) 

and 

(n|α) = e−|α|2/2 α
n 

√ 
n! 
. (14) 

Compute and plot the following: 

(i) 

Q1(α) = |(α|ψ1)|2 , (15) 

for 

|ψ1) = cos 
θ 
2 
|0) + e iφ sin 

θ 
2 
|12) , (16) 

where |12) is the twelve photon number eigenstate. Plot for various values of φ and θ. 
Is this a minimum uncertainty state? Is it a squeezed state? 

(ii) 

Q2(α) = |(α|ψ2)|2 ,	 (17) 

for 

|α) + | − α)|ψ2) = √ ,	 (18)
2 

say, with α = 3. Try plotting this on a logarithmic scale, and you should see interference 
fringes around the origin. What is that due to? 

∑
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(iii) 

Q3(α) = |(α|ψ3)|2 , (19) 

for 
N 

1 |ψ3) = √ e ikφ|k) , (20) 
N 

k=1 

where |k) is a Fock state of k photons, say with N = 10 and φ = π/4. How would 
you interpret the physical meaning of this state? What happens as N → ∞? Is this a 
squeezed state, and how so? 

(iv) 

Q4(α) = |(α|0E)|2 , (21) 

where |0E) = S(E)|0) is the squeezed vacuum with parameter E. You may use a 
1 

∞ 
(2n)!

S(E)|0) = √ (tanh E)n|2n) . (22) 
cosh E 2nn! 

n=0 

Compare plots made with E = 0.2, 1.2, and 4, for example. Look for the signatures of 
squeezing. 

(v) 

Q5(α) = |(α|e iHkerrt|β)|2 , (23) 

where the Kerr effect Hamiltonian is 
†Hkerr = ξa† a(a a − 1) = ξn(n − 1) . (24) 

This is easily numerically computed by using the number basis representation 
of the coherent state |β). Take β = 4, and ξ = π/128, for example, and gen­
erate a sequence of plots as a function of time. At what time does the initial 
coherent state evolve to become two superposed coherent states? When does 
it return to its original state? The Kerr-type nonlinearity is important both 
in nonlinear optics, and in interacting cold atomic gasses. It produces interest­
ing and useful squeezed states, such as that depicted in this sample Q(α) plot: 

∑

∑
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