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1.	 Lossy interferometer. A real interferometer usually suffers from loss of photons in its arms, 
or due to imperfect beamsplitters. The effect of such loss can be modeled by a beamsplitter, 
as we explore in this problem. 

a) Our starting point is the standard Mach-Zehnder interferometer, which uses two 50/50 
beamsplitters, and has a phase shifter of variable delay φ: 

a

b j

In the absence of loss, and given an input |10) (notation |ba)), a photon is measured to 
be output in mode b with probability Pb = cos2(φ/2). The fringe visibility of this output 
signal is defined as 

max(Pb) − min(Pb)
V	 = , (1)

max(Pb) + min(Pb) 

where the min and max are taken over φ. Show that V = 1 for this ideal situation. 

b) Suppose now that one arm of the interferometer is lossy, and we model this loss with a 
beamsplitter, in this way: 

Let the input state be |φ0) = |010) (using notation |cba) for the three modes). The two 
outer beamsplitters are the usual 50/50 beamsplitters of the Mach-Zehnder interferom­
eter, while the new middle beamsplitter has angle θ. When θ = 0, no photons are lost 
from b into c, and when θ = π/2, any photon in b is moved into mode c, modeling com­
plete loss. Give the intermediate states |φ1) through |φ3), and compute the probability 
that a photon is found at the output in mode b, as a function of φ and θ. What is the 
fringe visibility as a function of θ? 
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c) Now let both arms of the interferometer be lossy, modeled with two beamsplitters, in 
this way: 

The top beamsplitter has angle θ', and the bottom one θ. Give the intermediate states 
|φ1) through |φ4), and compute the probability that a photon is found at the output in 
mode b, as a function of φ and Δθ = θ − θ'. What is the fringe visibility as a function of 
Δθ? Suppose you include only cases when at least one photon is measured to be output 
in b or c (in other words, throw away the case when no photons are measured at the 
output). How does the visibility change, when using this conditional probability? 
The case when Δθ = 0 is known as the balanced loss Mach-Zehnder interferometer, and 
your results should show why balancing the loss in the two arms is helpful. Restricting 
cases to when at least one photon is detected implements a simple kind of quantum error 
detection code! 

d) In the scenarios above, a single photon input was used. Do any of the visibilities change 
if a coherent state were input instead? If not, then describe a situation in which the 
effects of loss would distinguish interferometers used with single photons versus coherent 
state inputs. 

2. Generation of Squeezed States by Two-Photon Interactions 

Consider a mode (kk, kε) with wavevector kk and polarization vector εk of the electromagnetic 
field with frequency ω whose Hamiltonian H is given by   †)2 −2iωt − a 2 2iωtH =  ωa† a + i Λ (a e e (2) 

where a† and a are the creation and annihilation operators of the mode. 

The first term of Eq. 2 is the energy of the mode for the free field. The second term describes a 
two-photon interaction process such as parametric amplification (a classical wave of frequency 
2ω generating two photons with frequency ω). Λ is a real quantity characterizing the strength 
of the interaction. 

(a) Write the equation of motion for a(t) Using the Heisenberg picture. Take 

a(t) = b(t)e −iωt . (3) 

What are the equations of motion for b(t) and b†(t) ? 



3 

(b) Using the Heisenberg picture, the contribution of the mode (kk, kε) to the electric field is 
written  	  

i k· −i k· rEk (kr, t) = iEωkε a(t)e r − a †(t)e	 (4) 

where a(t) is the solution of Eq. 3. Show that 

b(t) + b†(t)	 b(t) − b†(t)
bP (t) = and bQ(t) =	 (5)

2	 2i 

(where b(t) is defined Eq. 3) represent physically two quadrature components of the field. 
Find the equations of motion of bP (t) and bQ(t) and give their solutions, assuming that 
bP (0) and bQ(0) are known. Give the corresponding solutions for b(t) and b†(t). 

(c) Assume that at t = 0, the electromagnetic field is in the vacuum state. Calculate at 
time t the mean number of photons (N) in the mode (kk, kε) as well as the dispersion 
ΔbP (t) and ΔbQ(t) on the two quadrature components of the field. Explain the results. 

3.	 Noise properties of squeezed states. 
We now look at noise properties of squeezed states generated in question 2. The results 
obtained will be useful here, namely, the transformations under squeezing of b and b†, of 
the quadrature components bP and bQ and of their dispersions ΔbP and ΔbQ. 
We again start with a vacuum state at t = 0 and, for simplicity, fix the interaction time 
to t = t0. Let us define the squeezing parameter of the resulting squeezed vacuum state 
r = 2Λr. 

2(a) Calculate the photon number variance < Δn > of this squeezed vacuum state. How is 
it related to the variance of the two quadrature components of the field < Δb2 > andP 
< Δb2	 >? Take the limit of large squeezing r >> 1. How does the photon number Q 
variance scale with the mean photon number of the squeezed vacuum state? Compare 
this scaling to a strong coherent state (classical laser beam). 

(b) Consider now that our squeezed vacuum state is attenuated, and as in problem 1, we 
model the loss with a unitary beam splitter with vacuum state input at the second port. 
Let T = t2 be the transmission coefficient of the beam splitter (where t is the amplitude 
transmission coefficient) and R = 1 − T is the reflection coefficient. Let us quantify 

2the quality of the squeezed state by the ratio c of variances of the two quadratures 
(larger variance over smaller variance). At what attenuation (value of T ) is the quality 
of squeezing c2 reduced by a factor of 2? 

(c) Now let us see what happens to the squeezed vacuum state when we replace the vac­
uum state input at the second port of the beam splitter with a coherent state |α > 
(local oscillator (LO)). Remember that mixing with a coherent state on a beam splitter 
approximates a displacement operation. Assume that the coherent state displaces the 
squeezed vacuum along the lower-variance quadrature (this corresponds to a choice of 
phase of α). Sketch the phase space of the output state. 

i. What is the mean photon number at the output? Express the result in terms of the 
mean photon numbers of the input states. 
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ii. What is the photon number variance at the output? (Hint:	 remember from class 
notes, that the squeezed vacuum state is composed of even-photon-number eigen­
states only.) Identify the different contributions. Take the limit of large squeezing 
and small attenuation (such that it does not degrade the quality of squeezing - refer 
to part (b)). 

iii. Can sub-Poissonian photon number fluctuations be achieved at the output?	 If so, 
what are the constraints on the strength of the LO |α|2? Can you give intuitive 
reasoning for why mixing with the LO changes the nature of photon number fluctu­
ations of the squeezed state? This goes to show that squeezing can be measured on 
a single photo-detector, without the need to measure field quadratures. 

4. Teleportation 
√ 

The two-mode state |ΨEP R) = (|00) + |11))/ 2 has many interesting properties, one of which 
is its usefulness in “teleporting” unknown quantum states, as explored in this problem. 

a) Let the two modes of |ΨEP R) be separated by a considerable spatial distance, such that 
Alice has the first photon, and Bob has the second. Alice is also given an unknown 
quantum state |ψ) = a|0) + b|1), so we may write the complete state of all three modes 
as 

|ψ0) = |ψ)|ΨEPR)	 (6)   |00) + |11)
= [a|0) + b|1) √	 (7)

2 
a|000) + a|011) + b|100) + b|111)

= √ ,	 (8)
2 

where the first two modes are Alice’s, and the third is Bob’s. Suppose that Alice can 
measure her two modes in the basis defined by the four orthogonal states (the “Bell state 
basis”) 

|00) + |11)|φ00) = √	 (9)
2 

|01) + |10)|φ01) = √	 (10)
2 

|00) − |11)|φ10) = √	 (11)
2 

|01) − |10)|φ11) = √ .	 (12)
2 

What single-mode state does Bob end up with, for each of Alice’s four possible 
measurement results? Show that if Alice sends Bob two bits of information, he can use 
that to perform a corresponding unitary operation on his state to recover |ψ). 

The rest is for your interest only. The Bell basis measurement used in the scheme above is 
difficult to accomplish with optics, and generally requires some kind of nonlinearity that 
is challenging to realize with single photons. However, an alternate teleportation scheme 
can be employed, which uses squeezed states instead of photon number states, allowing 
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a beamsplitter and homodyne measurement to accomplish the Bell basis measurement. 
This can work as follows. Let  ∞1 iαx|φP ) = dαx e 

P |αx + iP ) , (13)
N (P ) −∞ 

where |αx +iP ) denotes a coherent state, and N (p) is some normalization factor which we 
may neglect. This is an infinitely squeezed state with well defined momentum quadrature 
value P (convince yourself of this by sketching its Q(α) plot). Similarly,  ∞1 |φX ) = dαp e 

−iXαp |X + iαp) (14)
N (X) −∞ 

is an infinitely squeezed state with well defined position quadrature value X. 

     
Recall that a 50/50 beamsplitter U transforms the two-coherent state input |α)1|β)2  

β − α 
    

as 

α + β 
U |α)1|β)2 √ √ (15)= . 

2 21 2 

Suppose that the two output modes of the beamsplitter are measured in the x ∼ a + 
† †a and p ∼ a − a quadratures (modes 1 and 2, respectively), giving measurement 

results X and P . By calculating U† acting on |φX )1|φP )2, it can be shown that the 
quadrature measurement projects an arbitrary input state into the basis defined by this 
(unnormalized) state:  ∞  ∞ 

|φXP ) = dαx dαp e 
−∞ −∞ 

i(αxP −Xαp)

    −αx + iαp + X − iP √ 
2

      
αx + iαp + iP + X √ . 

21 2 
(16) 

These basis states define a continuous variable Bell basis, where X and P are analogues 
of the two indices describing the four discrete Bell states of Eqs.(9-12). 

We have shown that a beamsplitter and quadrature measurements can be used to perform 
a kind of Bell basis measurement. To implement teleportation, we also need an analogue 
to the entangled state |ΨEPR). Specifically, we would like one of the basis states |φXP ); 
for example, it would be satisfactory to have  ∞  ∞ 

|φXP =00) = dαx dαp
−∞ −∞ 

    αx + iαp√ 
2

      
αx − iαp√ , (17)

22 3 

where we have labeled the modes by “2” and “3” for later convenience. This state is a 
two-mode squeezed state. Specifically, consider the two-mode squeezed state  

|Ψs 
EPR)23 ∝ s n|n)2|n)3 . (18) 

n 

Such a state can be generated in the laboratory by a non-degenerate optical parametric 
oscillator. It may be rewritten in the coherent-state representation as  

/g2 

|Ψg )23 ∝ d2α e−|α|2 |α)2|α ∗ )3 (19)EPR
C 
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where the integral is taken over the complex plane. It is easily found that g = s/(1 − s). 

For more info on the teleportation protocol, refer to the AMO Wiki:
 
https://cua-admin.mit.edu/apwiki/wiki/Non-classical states of light
 
and to the experiment carried out in Jeff Kimble’s group at Caltech (Furusawa
 
et al, Science vol. 282, p. 706, 1998).
 

https://cua-admin.mit.edu/apwiki/wiki/Non-classical states of light
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