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1. Heisenberg-limited interferometry with the Yurke state 
√ 

The Yurke state |ψ) = (|n)|n − 1) + |n − 1)|n))/ 2 allows one to obtain a measurement of √ 
2 an unknown phase φ with uncertainty (Δφ) = , using a Mach-Zehnder interferometer. n 

Methods for experimentally realizing these states have been proposed, for example, using 
Bose-Einstein condenstates [Castin & Dalibard, Phys. Rev. A vol. 55, p. 4330, 1997]. For 
this problem, use the following definition for the beamsplitter: 

BaB† = √ 
1

(a + ib)
2 

BbB† = √ 
1

(b + ia) (1)
2 

a) Let us now analyze the Mach-Zehnder interferometer, fed with a Yurke state as input. 
Use this setup: 

a

b j

and work in the Schrodinger picture, by doing the following. Let the input be the Yurke 
state, |φ0) = |ψ), let the state after the first 50/50 beamsplitter be |φ1) = B|φ0), the state 
after the phase shifter be |φ2) = P |φ1), and the state after the final 50/50 beamsplitter 
be |φ3) = B†|φ2). Give expressions for |φ1), |φ2), and |φ3). Note that the transform of 

iφthe phase shifter P is P aP † = ae . Double-check that when φ = 0, the output is the 
same as the input |φ3) = |φ0). Hint: write these states in terms of operators acting on 
the vacuum. 

b) What is the uncertainty with which you can determine φ using the Yurke state input? 
This is 

(ΔM2)(Δφ2)       (2)= 2 , 
∂ M 
∂φ

†where M = a a − b†b is the difference in the photon numbers measured at the outputs 
of the interferometer. Compute (Δφ2), evaluated at φ = 0 (the point at which the 
interferometer is balanced), using the |φ3) you obtained above. You should find (Δφ) = √ 

2 . n 

c) In lecture, we used the Heisenberg picture to compute statistics about interferometer 
performance with coherent state inputs. For comparison with the Yurke state, let’s now 
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work out what happens with coherent states in the Schrodinger picture. Using the same 
diagram as above, let the input now be a coherent state and a vacuum state, |ψ0) = |α)|0). 
Just as above, let the state after the first 50/50 beamsplitter be |ψ1) = B|ψ0), the state 
after the phase shifter be |ψ2) = P |ψ1), and the state after the final 50/50 beamsplitter 
be |ψ3) = B†|ψ2). Give expressions for |ψ1), |ψ2), and |ψ3). 

d) Given the quantum fluctuations of the coherent state, use uncertainty propagation to 
determne the uncertainty with which you can determine φ using the coherent state input, 
as a function of n̄ = |α|2 and the phase shift angle φ. 

2. Hanbury Brown and Twiss Experiment with Atoms 

This problem illustrates the coherence and collimation requirements for performing a Hanbury 
Brown and Twiss (HBT) experiment with atoms. In fact the HBT experiment was done for 
both bosons (4He) and fermions (3He) by Jeltes and company in 2007 (T. Jeltes et al., Nature 
445, 402 (2007)). (Note: Ignore gravity in this problem.) 

If a free particle starts at point A at time t = 0 with an amplitude (wavefunction) ψA, then 
the amplitude at another point 1 and time t = τ is proportional to ψAe

i(k·rA1 −ωτ ), where 
rA1 is the vector from A to 1, k is the particle’s wavevector, and 1ω is its total energy. This 
can be regarded as Huygen’s principle for matter waves, and is a special case of the Feynman 
path integral formulation of quantum mechanics. 

(Based on figure 19-5, in G. Baym, Lectures on Quantum Mechanics) 

(a) Correlation function 
Assume we have a particle at A with amplitude ψA and one at B with amplitude ψB . 
The joint probability P of finding one particle at 1 and one at 2 is 

2iφA1 ψB e 
iφB2 iφA2 ψB e 

iφB1P = ψAe ± ψAe (3) 

and is proportional to the second-order coherence function g(2)(1, 2). The ± is for 
bosons/fermions and makes the two-particle wavefunction symmetric/antisymmetric un­
der the exchange of particles. Here, φA1 = kA · rA1 − ωτ is the phase factor for the path 
from point A to detector 1, etc. Calculate P as a function of r21, the vector from point 
2 to point 1 on the detector. 

(b) Transverse Collimation 
Assume you are given a source (e.g. a ball of trapped atoms) with transverse dimension 
W and detector with transverse dimension w where |r21| ≤ w. The distance between 
source and detector d is much greater than all other distances. The transverse component 
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of the phase factor in part (a) can be written: φt = (kA − kB ) · (r21)t. Assume that t 
the signal at the detector is mainly due to atoms with wavevectors distributed around 
k0. Argue that the transverse collimation required to see second order correlation effects 
can be expressed as Ww « dλdB , where λdB is the deBroglie wavelength corresponding 
to k0. (Hint: How does φt vary for atoms originating at different points in the source 
and being detected at different points on the detector?) 
Consider a 6Li MOT at 500 µK. Calculate the deBroglie wavelength. Assuming a MOT 
and detector of approximately equal size (W ≈ w), estimate an upper bound on the 
MOT and detector size using d = 10 cm. 

(c) Longitudinal Collimation 
(i) The longitudinal component of the phase factor in part (a) can be written: φl = 
(kA − kB )l · (r21)l. Assume a Gaussian distribution of wavevector differences p(kA − 

γ2−|kA −kB |2kB ) = e where the width γ is related to the temperature of the atoms. 
Calculate (P ) using this distribution and your result from part (a). Sketch (P ) for 
both fermions and bosons, indicating the extent of (r21)l over which the second order 
correlation effect can be seen. (Hint: Use the fact that φt « 2π from part (b) to simplify 
the integral.) 
(ii) Now assume you have a pulsed source of atoms with longitudinal dimension L. Atoms 
are released at time t = 0 and detected at some later time t = τ . Give geometric argu­
ments to show that the wavevectors of detected atoms must obey | (kA − kB )l �d ,| ≤ mvL

dwhere the velocity v = τ . This implies that the different velocity groups separate during 
the expansion, narrowing (by a factor L ) the velocity distribution of atoms detected at d 
any particular time.
 
Consider again the 6Li MOT from part (b). Assuming τ = 0.1s and L ≈ W , estimate
 
the necessary timing resolution of the detector in order to see second order correlation
 
effects?
 

(d) Phase-Space Volume Enhancement 

We now pull all the pieces together. The peak in g(2)(1, 2) is visible for (kA − kB ) · r21 ≤ 
2π. This is equivalent to saying that we must detect atoms from within a single phase 
space cell, defined by δpxδx ≤ h (and likewise for y and z). In our trapped atom sample, 

3
the 3D volume of a phase space cell is δxδyδz = (λdB ) . Liouville’s theorem says that as 
our ball of atoms expands, the number of phase space cells remains constant. Verify that, 
by using this pulsed source, the volume of a coherent phase space cell is increased by a 
factor d3/W 2L by the time atoms reach the detector. What is the order of magnitude 
of this increase (assuming L ≈ W )? 
Estimate the average occupation of a cell of phase space for the 6Li MOT from parts (b) 
and (c). How does this compare with the average occupation of a BEC or a degenerate 
Fermi cloud? 
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