
8.422 Atomic Physics II Spring, 2013 
Prof. Wolfgang Ketterle 

Assignment #9 

Due: Wednesday, May 1, 2013 

Consider the following questions for Na. Try to plug in numbers after obtaining an analytical expres­
sion. 

Na oven temperature T = 600K
 

natural line width γ = 2π× 10 MHz
 

Zeeman splitting 1.4 MHz/gauss
 

wavelength λ = 2π/k = 589 nm
 

1. A Zeeman Slower 

If you want to slow an atomic beam efficiently, you have to compensate for the changing Doppler shift 
(kk · kv) during the deceleration. This can be done by sweeping the frequency of the slowing beam, i.e., 
chirping (as discussed in class). A method of producing a continuous beam of cold atoms is Zeeman 
slowing. 

A well collimated beam of atoms is originating from an oven with a temperature T . The beam 
propagates along a distance L with a longitudinal magnetic field B(x) ( 0 < x < L ). A laser beam 
of intensity I is counter propagating. Its frequency is detuned by δ (δ ≡ ω − ω0) from the transition 
frequency at B = 0. 

a) Calculate the maximum deceleration amax you can achieve. Assume you could choose arbitrarily 
large laser intensities. 

Assume you want to slow down atoms with speeds lower than the peak (most probable) velocity vpeak 

of the thermal distribution to a stand still using the constant deceleration famax. (0 < f < 1) The 
Zeeman effect shifts the resonance ω0 → ω0 + gµB B(x) (where gµB = (2π)1.4 MHz/gauss, in this 
case). 

b) Calculate the spatial dependence of the magnetic field B(x) and the length L of the slower as a 
function of f . 

c) Assume three different models for spontaneous emission: (i) Photons are emitted along the +/− x̂
direction, (ii) isotropic emission, or (iii) emission in a dipole pattern. What is the momentum 
diffusion constant D for the (longitudinal) x-component of the momentum in the three cases, at 
a given photon scattering rate Γs? 
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2.	 Slowing an atom with off-resonant light 

Assume you want to slow an atom of velocity vpeak with a counter propagating laser beam that is on 
resonance with the atom at rest. (Use the same vpeak as in Problem 1, and I = 5Isat.) 

a) How long would it take? 

b) How far would the atom travel? 

(Hint: Think about integrating the equation of motion) 

3.	 Density Limit in a MOT. In a 3-D magneto-optical trap, the density of the trapped atoms is 
limited by a net outward radiation pressure which opposes the trapping force. We can divide the 
density-dependent photon-pressure force into two parts. First there is a repulsive ‘radiation trapping 
force’ due to atoms absorbing photons scattered from other atoms in the trap. Also, there is an attrac­
tive ‘attenuation force’ which is caused by atoms at the side of the cloud attenuating the laser beams, 
thus creating an intensity imbalance which leads to an inward force. 

(a) Show that the radiation trapping force obeys the equation 

6σLσRIn \ · FR = , 
c 

where I is the intensity of one of the trapping laser beams, n is the number density of atoms in 
the cloud, σL is the cross-section for absorption of the laser beam, and σR is the cross-section 
for absorption of the scattered light. (Hint: Find the magnitude of the force between two atoms 
separated by a distance d, where one atom re-radiates a laser photon and the second atom absorbs 
it. Now, since this is an inverse-square force, you can use Gauss’ law to find \ · FR. Assume that 
photons are only scattered twice.) 

(b) The attenuation force may be obtained simply by replacing σR with −σL, so that 

6σ2 In L\ · FA = − . 
c 

Explain why this is so. 

(c) The total force is the sum of FR, FA, and the trapping force FT = −κr, where κ is the spring 
constant of the trap. For stability we require that the total force is attractive, \· Ftotal < 0. Find 
the maximum density of the trapped cloud at a given κ from the condition \ · Ftotal = 0. 

(d) Give a qualitative argument for whether we expect	 σR = σL, σR > σL, or σR < σL. ( Hint: 
sketch the absorption and emission spectra for an atom in a strong laser field with a red detuning.) 

(e) Suppose that some of the atoms can be put into a ‘dark state’, so that only a fraction f of the 
atoms absorb the trapping light. How do FR, FA and FT vary with f? What happens to the 
limiting density nmax? This is the concept of the Dark SPOT trap (PRL 70, 2253 (1993)). 
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