Lecture 20: Electron-phonon coupling and electron lifetime

The formalism of second quantization is outlined. The phonon contribution to the specific heat is discussed. A simple argument shows that at low temperatures the specific heat goes as T^3 in the Debye model.

The electron-phonon coupling in the jellium model is discussed. It is simply the screened Coulomb interaction $v(\mathbf{r})$ between the charge modulation of the jellium $n(\mathbf{r})$ with the charge modulation of the electrons $\rho(\mathbf{r})$. The former is given by combining Eq. (4) and Eq. (8) of the last lecture while the Fourier transform of the latter is $\rho_{\mathbf{q}} = \sum_{\mathbf{k},\sigma} c^{\dagger}_{\mathbf{k}-\mathbf{q},\sigma} c_{\mathbf{k}}$. Putting everything together, we find

$$H_{e-pl} = \int d\mathbf{r} d\mathbf{r}' \, n(\mathbf{r}) \, v(\mathbf{r} - \mathbf{r}') \rho(\mathbf{r}')$$

$$= \sum_{\mathbf{q}} n_{\mathbf{q}} v_{\mathbf{q}} \rho_{\mathbf{q}}$$

$$= \sum_{q} \sum_{k,\sigma} g_{q} \left(b_{q} + b_{-q}^{\dagger} \right) c_{k+q,\sigma}^{\dagger} c_{k,\sigma}$$
(1)

where

$$g_q = \frac{4\pi e^2}{\kappa^2} \sqrt{\frac{n_0}{2M}} \frac{q}{\sqrt{\omega_q}} \tag{2}$$

Note the linear q term in the numerator of Eq. (2) comes from the gradient term in the relation between jellium density and displacement. This form of electron-phonon coupling is called the deformation potential and describes the coupling to longitudinal acoustic phonons.

The lifetime τ of an electron due to emission or absorption of phonons is written down using the Fermi golden rule. We show that if $kT \gg \hbar \omega_D$, $\frac{1}{\tau}$ is linear in T, i.e.,

$$\frac{1}{\tau} = 2\pi\lambda kT \tag{3}$$

where the important dimensionless electron-phonon coupling parameter is given by

$$\lambda = 2N(0) \int_{-1}^{1} \frac{d\cos\theta}{2} \frac{g_q^2}{\omega_q} \tag{4}$$

where $\mathbf{q} = 2k_F \sin \frac{\theta}{2}$ is the phonon vector which connects two points on the Fermi surface separated by the angle θ .

For the jellium model all the constants are known and Eq. (4) is easily evaluated to give $\lambda = \frac{1}{2}$. In real metals λ ranges from 0.2 to 0.3 for simple metals to more than unity for strong coupled metals such as Pb.

Reading: Marder 13.3.1, 13.3.2