
Problem Set 6 Systems Biology (7.32/7.81J/8.591J)

Problem Set 6

1 Stochastic simulation of a bistable system (20 points)

In class and in the previous problem set we have begun exploring the consequences of stochasticity.
We showed that because of stochasticity, identical systems can evolve di�erently in time despite
having the same initial conditions. (This behavior is in stark contrast to the di�erential equations
models we explored earlier in the course.)

The master equation o�ers an exact description of the time evolution of the probability distri-
bution of the system. However, solving the master equation for all but the simplest systems is fairly
di�cult (even if we are just talking about the steady state). We showed that it is possible (and
reasonable) to approximate the master equation at intermediate particle numbers by neglecting
particle discreteness. This approximation is called the Fokker-Planck equation. By the end of this
exercise you will learn to apply the Fokker-Planck equation to explore and gain intuition for more
complicated systems.

Our playground will be the bistable system considered in problem 3 of Problem Set 2. We
showed that the dynamics of the protein X were governed by the following di�erential equation:

dX

dt
=
v0 + v1K1K2X

2

1
− γX

+K1K2X2

Set γ = 1, K1K2 = 10−4, v0 = 12.5, v1 = 200. (These parameter values lead to a bistable
system.)

a. Sketch by hand the shape of the production and the degradation terms on the same plot.
Indicate the location of the stable �xed points on the plot. (No need to be fancy here.)

b. Calculate the values of X that correspond to the stable �xed points.

c. Write explicitly the expression for the potential of the system as derived from the Fokker-
Planck equation. Speci�cally, what are f(n) and g(n)? Don't forget to indicate the limits
on the integral. (Page 61-62 of the supplementary notes �Stochastic Chemical Kinetics� by
Alexander van Oudenaarden, which is listed under Lecture 10 reading, may prove useful).

d. The potential can be thought of as the potential energy of the system. Systems attempt to
minimize their potential energy (i.e., basketballs roll downhill not vice-versa), seeking the
state corresponding to the local minimum of potential energy. Noise can excite a system
(make the basketball temporarily roll uphill) and as a result the system may end jumping
between local minima.

1. Plot the potential for the parameter values introduced above.

2. Is the plot consistent with the idea that the system is bistable?

3. Compare your results to the values of X calculated in part b.
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e. Temporarily, set K1K2 = 1, and re-plot the potential of the system.
Based on the plot of the potential would you say that the system is monostable or bistable?

Now, set K1K2 back to its original value: 10−4.

f. COMPUTATION Perform a stochastic simulation of this system to show that the expression
level intermittently switches between the two stable states.

g. Use the simulation data to estimate the fraction of time that the system spends in each stable
state.

h. In the notes the following expression is given for p(n):

A
p(n) = e−ϕ

f + g

1. On a log-log scale plot f + g vs. n and also e−ϕ vs. n. Which of the two a�ects the
probability distribution more? Is it fair to say that p(n) ∝ e−ϕ?

2. Approximate the value of the constant A. (Useful functions: quad on matlab or NInte-

grate on Mathematica.)

3. Calculate the fraction of time you expect to see the system in each stable state and
compare it to the result you got from your simulation.

2 Life at low Reynolds number (10 points)

a. Dimensional analysis

Parameter Meaning Dimensions

ρm Mass density of �uid [M ][L]−3

v Velocity of object [L][T ]−1

a Linear dimension of object [L]
η Viscosity of �uid [M ][L]−1[T ]−1

1. Find a formula for the dimensionless Reynolds number Re.

2. Show that the viscous critical force fcrit =
η2 has the dimensions of force.
ρm

3. An object in the �uid is dragged by an external force fexternal and moves with a constant
velocity. In the limit of low Reynolds number (Re � 1), compare the external force
with the viscous critical force. How does the ratio fexternal scale with Re?fcrit

b. Coasting at low Reynolds1

As discussed in class, tiny objects stop moving at once when we stop pushing them.

1. Consider a bacterium, idealized as a sphere of radius 1 µm, propelling itself at 1 µm .
s

At time zero the bacterium suddenly stops swimming and coasts to a stop, following
Newton's Law of motion with the Stokes drag force. How far does it travel before it
stops? Comment.

1Adapted from Nelson, P. Biological Physics: Energy, Information, Life. (2008), ISBN-13: 978-0-7167-9897-2.
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2. Brownian motion assumes that each random step is independent of the previous one;
thus for example we neglected the possibility of a residual drift speed left over from the
previous step. In the light of (a), would you say that this assumption is justi�ed for a
bacterium?

3 Biochemistry of the E. coli chemotaxis network-Spiro model2

and Barkai model3 (20 points)

The E. coli chemotaxis network is represented in the accompanying �gure in a simpli�ed form.
T represents the Tar receptor and L the ligand or attractant. The receptor can by modi�ed by
phosphorylation (subscript P) or methylation (subscripts 2 or 3). For example,

• T2: Tar receptor that is unmethylated, unphosphorylated and not bound with ligand

• LT2: unmethylated, unphosphorylated, bound with ligand

• T2p: unmethylated, phosphorylated, not bound with ligand

• T3: methylated, unphosphorylated, not bound with ligand

a. The receptors, independently of their phosphorylation or methylation state, can bind an
extracellular ligand L according to the scheme

+kL
T + L
 LT

kL
−

+k
with the association constant KL = L .

kL
−

Calculate the fraction of receptors with a ligand bound to them.

b. We will assume that the ligand binding reaction is in rapid equilibrium and only consider
total amounts of each modi�ed form of receptor. So we will treat T tot3P = T3P +LT3P , etc, as
the new relevant dynamical variables reducing the original problem to the analysis of the 4

2P.A.Spiro et al. PNAS 94 , 7263-7268 (1997)
3N.Barkai and S.Leibler. Nature 387 , 913-917 (1997)
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state system depicted below.

The assumed rates in the models of Spiro et al. and Barkai et al. are shown in the table
below.

Write down explicitly the e�ective rate constants k+a , ....., k
+
d and ka

−, ....., kd
− for each model

in terms of the symbols listed in the table.

Related e�ective rate constant Spiro model Spiro model Barkai model Barkai model

L unbound L bound L unbound L bound
k+a k8 0 0 0
ka
− ky ky k0 k0
k+b 3k8 1.1k8 k+p1 k+p2
kb
− ky ky kp

−
1 kp

−
2

k+c k+1 k3 k k
kc
− k1

− k1
− 0 0

k+d k+1 k3 0 0
kd
− k1

− k1
− km km

c. Note that some e�ective rate constants are now functions of L. This is appropriate since we
know, for example, that the receptors should become less phosphorylated as L increases.

+

1. In the Spiro model, do ka
k−a

and
k+b increase or decrease with L?
kb
−

2. In the Barkai model, we would like k+b to decrease and kb
− to increase with L. What

does this imply about k+p1 , kp
−
1 , k

+
p2 and kp

−
2 ?

d. Spiro model. In steady state, after the slow methylation reactions have had time to equi-
librate, let α(L) represent the fraction of receptors that are methylated. Consider now the
total concentration of phosphorylated and unsphosphorylated receptors. Write out, in terms
of α(L) and the relevant rate constants from the table shown in part c, the e�ective rates of
phosphorylation (k+p ) and dephosphorylation (kp

−) using:

k+p = [1− α(L)]k+a + α(L)k+b
kp
− = [1− α(L)]ka− + α(L)kb

−

For perfect adaptation to be achieved the phosphorylated fraction of receptors must be
independent of L in steady state. Show that this will hold if and only if k+p is a constant (i.e.
it is independent of L). We will name this constant κ.
Now set κ = k8 = 15 s-1, KL = 106 M-1.
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1. Plot k+a and k+b for L = 0 to 2 / KL and, on the same graph, draw a horizontal line
showing the desired κ.

2. Set k+p = κ in the equation above, solve for α(L) and plot this function. This is the
magical form of α(L) required for perfect adaptation. The model of Spiro et al is
carefully �tuned� in order to achieve this result. W can contrast this situation with the
Barkai model in part e, which has perfect adaptation but requires no �ne tuning.

e. Barkai model. Biochemical evidence suggests that the methylation reaction (whose rate con-
stant was written as k in part b) operates at saturation with rate ν. Show that under this
assumption the entire model reduces to the following reaction scheme:

Note that ν is a constant rate per unit volume (measured in M s-1) while km is a rate constant
(measured in s-1). According to the table in part b, what would the value of k

′
m be?

Treat k
′
m as an independent variable now. Write down the equation for d(T tot3 + T tot3P )/dt

and solve for T tot3P in steady state. Show that this value is independent of L if and only if
k
′
m = 0. This is the essence of the Barkai model: perfect adaptation is easy to achieve, as
long as the phosphorylated receptors are demethylated by the CheB protein.
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