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PROFESSOR: Today what we're going to do is finish off our discussion about oscillators. In

particular, we're going to talk about alternative designs for oscillators. So rather than

having these loops that are purely composed of negative interactions, negative

feedback, instead we're going to talk about cases where you have both positive and

negative interactions.

So in using this kind of combined network structure, you can generate what are

known as relaxation oscillators, which have some really wonderful properties. In

particular you can get more robust oscillations, relative to the parameters. But also

the oscillations become tunable, i.e. you can change the frequency, without

compromising, for example, the amplitude of the oscillations. So for both natural

and synthetic oscillators these so-called synthetic oscillators are perhaps the way to

go.

And then we're going to transition to more of the global structure of some these

networks in the context of transcription networks within cells. And discuss this paper

that you guys just read, the Barabasi paper, which is one of the world's most cited

papers, I think. And then after thinking about this global structure, of how you might

be able to generate these so-called power law structures, we're going to look a little

bit more in detail to try to understand something about these network motifs. We've

already talked about them a little bit in the context of auto regulatory loops, but now

we'll talk about them in a little bit more generality, in particular in the context of feed

forward loops. And then on Thursday we will get into some of the possible beneficial

features of feed forward loops.

On Thursday we talked about the repressilator. So if you have x inhibiting y

inhibiting z coming back and inhibiting x, that it's reasonable to expect that it might
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generate oscillations. And indeed in the Elowitz paper that we read, such a synthetic

circuit did indeed generate oscillations, but there were perhaps a few problems

there, right? So one is that only about 40% of the cells actually oscillated, who

knows why not. But also there were other problems that the oscillations seemed

rather noisy, there was relatively rapid desyncronization.

Moreover, if you go and you ask, well is it possible, or how easy would be to change

the period of the oscillations just by changing something like the degradation rate,

what you'll find is that the oscillations are not very tunable. So I'll say the period, or

the frequency, is not very tunable, and indeed this is a general feature of oscillatory

networks that have purely negative interactions. We talked about a couple of these

cases, for example, you can get oscillations just with negative auto regulation. And

what is it that's necessary?

AUDIENCE: [INAUDIBLE].

PROFESSOR: What's that?

AUDIENCE: High coordination.

PROFESSOR: High coordination? You me-- oh you're--

AUDIENCE: [INAUDIBLE].

PROFESSOR: Cooperativity in the repression, that I think is necessary, but is it going to be

sufficient? Even in this case where I just have, let's say that I say, x dot the rate of

production, if this thing is just as a function of x, the sharpest it could be, this is

infinite cooperatively, so it's maximal expression. And then when you get above

some x critical all of a sudden you fully repress. If I just have this be the formula--

did you guys understand what I'm referring to here? What would this generate?

Would this generate oscillations? So it actually doesn't.

In the simple equation, where if we have x dot is equal to this function. So I guess

this is a theta, I want to make sure I get this x, less than x critical, that's what this

means. So with some [INAUDIBLE] rate beta, minus some alpha x. Does this thing
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oscillate? No, and we had a simple argument for why did not oscillate, as well. Yes?

Yell it out somebody, I'm sure somebody was here on Thursday.

[LAUGHTER]

AUDIENCE: [INAUDIBLE].

PROFESSOR: That's right. So this is just-- This is just an x dot, there's no x double dot, so that

means the derivative of x, the single value is a function of x, that means that we

can't get any oscillation here. And then remember we analyzed this model where we

explicitly included the mRNA, so then we just had that x comes, and what it does, is

it represses expression of this mRNA for x, and then this mRNA comes back and

makes x. Right?

And in this model, was this sufficient? Did this give oscillations? No, so this also

here, there was no oscillations. Again here, there were no oscillations. But I did tell

you that you could do something more to get oscillations, just with a single protein

repressing itself. So you need more delays. So if you add delays, then it's possible

to get oscillations. So those delays could be in the form of having a model where

you explicitly take into account that first mRNA is made, and then that goes, and

then you translate that to make some monomer, and then the monomer has to

maybe fold, and then the folded protein maybe has to dimerize in order to do a

repression.

So if you have a more detailed mechanistic model, that includes all these steps, that

kind of introduces some sort of delay, that in principle can lead to oscillations in

such a circuit. Or if you wanted to, you could just explicitly put in a delay. So you

could say that x dot, instead being a function of x, instead what you can do, is you

could say, well its actually a function of x at some time, t minus tao. So instead of

having the rate of production of x be a function of x, at that moment in time, instead

it could be a function of x at some previous time. Doing that, that's a very explicit

form of delay.

And that can also be used to generate oscillations in a simple negative auto
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regulatory loop. These are all different kind of approaches for encoding delays into

a model and in various approaches will give you oscillations. Yes?

AUDIENCE: Question for the repressilator, when you say the period is not tunable, it's because

the mRNA lifeline is very difficult to--

PROFESSOR: All right, when we say--

AUDIENCE: --in the model you can--

PROFESSOR: Yes, that's right. In the model you can, in principle-- So what I mean when I say this

is that in this class of model, so you could also have, instead of this repressilator

with three, you have the so-called pentalator, where you have five proteins and

each is repressing itself. So these all have similar features, so all have these odd

numbers of proteins going around and repressing one another. And so you can

write down the model with seven, if you want. But in all these cases, it's not tunable.

What we mean by that is that, when you tune the frequency, you in general lose the

amplitude of the oscillation. So the amplitude will go down.

There was a very nice paper that was written in 2008 on this topic, written by Jim

Ferrell at Stanford. So I just want to mention this. So its Ferrell, at Stanford, this is a

paper in Science 2008, and it's called Robust Tunable Biological Oscillations from

Interlinked Positive and Negative Feedback Loops. So nice title, I like titles that say

something. So it's sort of the ultimate short version of an abstract, right, if you can

do it I recommend it.

Incidentally in graduate school, I once wrote a paper with four words, short words,

DNA over-winds when stretched. Nice statement, you may or may not actually know

what I mean by that, but it's a nice short, title, it's a statement. I encourage you to

think about that when you're writing your papers.

So he wrote this paper where, he said, all right, well, oscillations are really

important. Thinking about context of heart rhythms, or cell cycle, or this or that.

Oscillations are important, but if you go and you look at the circuits that are

generating oscillations in biology, they often have so-called interlinked positive and
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negative feedback loops.

There are many cases where you have, some x that actually is positively, it's kind of

activating itself. And this is very much something that will not lead to oscillations on

its own. It might be bistable, which is interesting, but not oscillations on its own. But

then there's also maybe a negative feedback loop through another protein.

And the idea is that this one somehow operates-- this one's fast, and this one's

slow. And the key feature of these relaxation oscillators is they are two time scales.

And it's the slow time scale that specifies the period of the oscillation, and this fast

one kind of locks the system into these alternative states. And this helps maintain

the amplitude, because it has this nature being bistable, right, so it's on or off. So

this helps you maintain amplitude, so this is kind of in charge of amplitude, and this

one over here is in charge of the period.

So what you can imagine that by changing this time scale, you change the period of

the oscillation, whereas this loop allows you to maintain the amplitude. And what

Jim's group did computationally in this paper, is they analyzed many different circuit

designs that can lead to oscillations, and they showed that for the loops that are

made of purely negative interactions like this, if you change a parameter in order to

change the period, you'll also in general make the amplitude of the oscillations drop

dramatically.

So that's the sense in which they're not tunable. Whereas if you have this kind of

design, you can actually tune over, in some cases a very wide range, but maintain

the amplitude of the oscillation. And in addition to being tunable, these things also

end up being robust in various ways. The oscillation is maintained subject to various

kinds of-- If you twiddle with the parameters, you double this, you have that, you still

get nice oscillations here, whereas in those designs you tend to lose the oscillations

more easily.

So they claim that based on that, that these might be more evolvable. So even in

cases where you don't need to tune the period, maybe you still end up evolving

towards this design, just because it's robust to stochastic fluctuations in the
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concentrations of things, but also it might be easier to evolve these sorts of

oscillations.

Are there any questions about the kind of intuition behind this for now?

There's a nice kind of circuit analogy that people often talk about in the context of

this. So if you imagine you have some battery, with some voltage, v, well, we'll say v

battery, some capacitor over here, but over here you have something that will spark

at some voltage, some v t, you get a spark. Now the question is, well, what happens

over time if the threshold is less than v battery? We maybe should have a resistor in

here.

So the threshold is less than v battery, then this can generate nice oscillations in the

voltage say across the capacitor as a function of time, that are tunable. Because if

you plot as a function of time. This is the voltage across the capacitor, where up

here we might have the v, the battery, here we might have v threshold. Now in the

absence of-- This thing's that's going to short periodically, we're just going to charge

up the capacitor. So in principle, there's going to be this standard r, c time constant,

coming up to here, but before we get there, we get the spark. So then we discharge

across here and this drops. So you get something that looks like this.

Now you can imagine by changing, for example, the resistor, you can change the

rate that this thing, the capacitor, will charge up. But the amplitude of the oscillations

stay constant, because that's set by the voltage threshold across this-- where it

shorts. This is capturing this dynamic of the separation of time scales. So there's a

slow time scale, which is this r, c time constant, and then there's the rapid time scale

is where this shorts out. So you can imagine that this is an example of an oscillatory

signal that we can to tune the frequency without sacrificing the amplitude.

What we've said so far is that there are engineering analogs to these sorts of

relaxation oscillators. We can model various synthetic circuits, or we can look at

natural oscillatory networks, in order to get a sense of what's going on. But of

course, a major goal of this kind of system synthetic approach to the field, is that if

all this stuff is really true, we should be able to build it.
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all this stuff is really true, we should be able to build it.

And there's a very nice demonstration of this, also in 2008, by Jeff Hasty's group.

So Jeff Hasty was actually trained as a high energy theorist, and then I think it was

during his postdoc, maybe he switched into experimental biology. Went and did his

postdoc, I think, with Jim Collins. And then eventually now has his own group doing

systems synthetic biology.

In this paper, it was a Nature paper in 2008, it's called A Fast Robust and Tunable

Synthetic Gene Oscillator. It's a nice statement, tells you what he's about to do. The

data here, this is again using this basic insight of having both interlinked positive

negative feedback loops in E. coli. He demonstrated that he can get really beautiful

oscillations, in essentially all the cells, and that they're tunable, enter n period, by a

factor of three, or four, or so, by a fair amount. And indeed as fast as 13 minutes,

the oscillatory period. Which is pretty nice, right? So I encourage you to check out

this paper.

This paper was also an example of how it was in principle possible to get oscillations

just by doing negative auto regulation. Right, so this was a case where they

designed a gene network that they could tune and had this wonderful property. But

then after they did that they noticed that in their model at least, they could get

oscillations in some parameter regime, just by having the negative auto-regulatory

loop. And as a result of all these intermediate processes, of protein maturation, and

so forth, and then they went and they constructed that network, and they showed

that that could also oscillate.

So again this is an example of the interplay between modeling, experiment theory,

modeling, And Jeff Hasty has gone on to write another several, really beautiful

papers looking at these sorts of oscillations, looking at how you can get

synchronization of oscillators, and you get period doubling ideas. It's really a whole

string of wonderful, wonderful papers. So I encourage you to, if you're interested in

oscillations, to look at Jeff Hasty's work over the years.

If you want a quick introduction to these papers, I also wrote a news and views in
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Nature on these two papers. So you can read that, it's only a page. Although I

guess you won't hear anything that you haven't already heard probably.

Any other questions about this idea of how we can use both positive and negative

feedback in order to get some nice oscillatory properties? OK, then let's move on.

What did you guys think of this paper, the Barabasi paper? Good, bad, difficult,

easy?

AUDIENCE: Why does it have so many citations?

PROFESSOR: Why does it have so many citations? All right that's an inter-- and you should look at

how many-- according to Google Scholar, I haven't checked this year, but it's

probably 20,000 citations. I mean it's--

AUDIENCE: Is it a cult thing?

PROFESSOR: It's a cult thing. Well, I don't know. That might be exaggerating.

AUDIENCE: I mean it's a nice paper.

PROFESSOR: Yeah, right. So this is interesting, and I think that the basic answer is that there are

networks that are relevant in many, many, many fields, which they allude to. And

there are many researchers that have been excited about studying those networks

in many, many fields, and many, many, many of the networks that are observed in

nature or social science, the web, everywhere, they have these power law

structures. And this is the first clear simple mechanism to generate it. My

understanding is that actually a mathematician decades before, actually did

demonstrate that this kind of thing could be constructed, that would lead to this, but

that paper doesn't have 20,000 citations.

I mean like it's a lot of these things, you have to be the right time, right place, and

have the right idea.

AUDIENCE: Yeah, I guess my main thought about the paper is exactly that, the interesting thing

about it was, it came out at about the time that data on large networks was readily
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available.

PROFESSOR: That's right. There's a reason that this paper was published at this time, and of

course if Barabasi didn't do it here, someone else would have done it a year or two

later. But it was really that the data were available everywhere, and we were seeing

these power law distributions, and it's really crying out for an explanation. I think it's-

- You know sometimes people complain, that they say, oh yeah, you know I could

have come up with this idea, it's not that deep. And maybe you could have, but you

didn't.

[LAUGHTER]

PROFESSOR: And also I'd say that Barabasi has a record of doing interesting things, and being

the first to point out a simple idea. If you can reliably be the first to point out a simple

explanation for important things, then that's another kind of genius, right? I mean--

and it's the kind of genius that I aspire to, because I know that I'm not going to

reach the other kind of genius. I mean there are some things you look at, oh well, I

would never be able to do that, right? And everyone agrees that that's hard.

But I think that there is something about being able to see what the scientific

opportunities are at a given time, and you don't have to come up with a really

complicated model or proof in order to have really important impact. And this paper

is way beyond, in terms of number of people that have read it, cited it, and so forth,

it's way beyond, probably any other paper you'll likely read in your life. Yes?

AUDIENCE: Just more thoughts.

PROFESSOR: More thoughts. Yeah, that's fine.

AUDIENCE: I guess, what's interesting is, it starts a conversation, so we can analyze these

networks, and the feature that works the best [INAUDIBLE] starts that conversation,

there's still a lot more that we can do with it [INAUDIBLE]. I think that's why I like it.

PROFESSOR: That's a totally-- so this is the Barabasi and Reka Albert. So Barabasi is a professor

over at Northeastern now, Reka Albert is a professor at Penn State, and I think
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they've both gone on to do what, I think, are really very interesting things in this

network space, and more generally. So I you encourage you to check out what each

of them have been doing over the years.

All right, so this model, what are the two key ingredients of this model?

AUDIENCE: Growth and preferential attachment.

PROFESSOR: Right, so the two things you should be able to recapitulate on an exam is that there

are two assumptions here, there's growth, and there's preferential attachment. And

we'll talk about the degree to which we think each of those things might be

necessary, but what's the key-- Can somebody be a little more explicit than what

we've been so far about what the key observation is that we're trying to explain?

AUDIENCE: There are nodes that, inactive nodes, that have more edges than you expect, either

by random or--

PROFESSOR: Right. Perfect, right. Observation-- So some nodes have lots of edges.

AUDIENCE: I mean it is sort of a meta irony that this paper is now very widely cited.

[LAUGHTER]

PROFESSOR: Yes.

AUDIENCE: Every time we talk about it--

PROFESSOR: Yes. Indeed it is ironic, and we'll talk about how the scaling of the citation networks

go in a moment. Right, so some nodes have lots of edges, and you want to be very

clear about this, this is what you're trying to explain. So it's a power law distribution,

so in particular, you quantify this thing. That the probability of having k nodes, or I'm

sorry, the probability that a node has k edges, falls off as a power law, 1 over k to

some power 2, 3, 4.

So the probability of having k edges, goes as 1 over k to some power alpha. Where

alpha is maybe between 2 and 4, for a lot of these. Now it's important to make sure
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that you keep this qualitative statement in mind, because it's true that it falls off, and

sort of rapidly. Right, 1 over k squared, k cubed, or k to the fourth, you'd say, oh,

that's a pretty rapid fall off. Right? But it's not rapid compared to what?

AUDIENCE: [INAUDIBLE].

PROFESSOR: --exponent. Right. So for these other models then, it falls off exponentially. Right?

So even faster. So it's easy to look at 1 over k to the fourth, and think, oh, that's a

fast fall off. We have to remember that it's slow compared to some other things. So

in particular, if you look at the data for real networks, and you see that the

probability distribution in many cases goes over orders of magnitude in terms of this

probability. You think oh, that's a big range. And it is a big range, but the fact is that

you actually see some nodes with the thousand ideas or whatnot, which is

something that you would just never see, if it were a random network, or if it were

not a power law distributed network.

And I think that this is also highlighting another statement, which is that a powerful

way to make a difference, for example, if you're going to write down a model, or

you're going to do a theory, is that it's nice if there's a clear observation that needs

to be explained. Because you can always write down a model of something, and

maybe you'll find something interesting. But a way to massively increase the

probability that you're going to discover something interesting is if you already know

there's something interesting there and that you're trying to explain it.

And I think that this is an example of that, right there, it was already an observation,

it was already known. It's not that he was the first person to make those plots. There

are other plots of citation networks before. So Sid Redner, for example, had already

done some analyses of citation networks, he's a theoretical statistical physicist over

at BU, but just now, I guess, moving over to the Santa Fe Institute. But it's not that

he was the first person to make that observation, but he knew there was something

interesting that needed to explained. So I'd say that for any of you that are thinking

about doing theory, or writing down models, I would say, whenever possible start

with an interesting observation. So can somebody-- maybe you guys could just
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throw out, what are some examples of nodes and edges that were given there or

elsewhere?

AUDIENCE: Web pages and links.

PROFESSOR: Right, web pages and links. And is this a directed or undirected?

AUDIENCE: Directed.

PROFESSOR: So this is indeed directed. Some others?

AUDIENCE: Movie stars and movies.

PROFESSOR: Movie stars and movies. This one's a funny one, rig-- So movie stars and then this

is like being in a movie together, right? So co-starring or so. Others?

AUDIENCE: Articles and Citations.

PROFESSOR: Articles and citations. And this is again directed, and this is not directed, right? And

we can maybe even try to remind ourselves, this fell off as alpha was equal to what?

I guess it was 3, I think they said. Actors work around 2.3, I guess they said. The

web was 2.1. Just because it's a power law doesn't mean that it's always going to

have the same alpha right?

But for example, what this means is that for every paper that has say 200 citations,

there are going to be roughly 10 papers that have 100 citations. If you increase k by

a factor of 2, you get almost an order of magnitude in terms of the probability

distribution.

So this is an interesting observation, and where Barabasi came in and said, well,

what would be a model that would recapitulate this? And what are the models that

did not recapitulate it?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Right. So the Erdos Renyi-- so other models, there's the E R, other models, there's

the Erdos Renyi network, random network, and that's because here the degree
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distribution is peaked around something and then falls off exponentially as you go

above that. And this is actually where I think the equations are wrong in this paper.

Because if you look at the paper, page 510, where they say the Erdos Renyi, you

connect the edges of probability p, and then they say you get a poisson distribution,

p of k, where lambda the mean is something, but then they say, oh lambda is equal

to some binomial of something of k, and so forth. So I think this is all not true, but

rather that you can approximate the binomial with a poisson in the limit of small Ps.

So be aware if you're looking at that.

I know-- there was another network that-- Do you have a question?

AUDIENCE: Oh, no, no. I was--

PROFESSOR: So we're going to spend a lot of time talking about probability distributions in the

coming weeks, but I just wanted to highlight that there, as far as I tell, that is not true

what they say. But there was one other model for a network that they talk about, or

they mention. Does anybody--

AUDIENCE: Small world.

PROFESSOR: The so-called small world network, right? And this is-- small world network, and this

is based on a paper by Strogatz-- Watts and Strogatz, small world. That's Watts and

Strogatz, and this was a paper where they demonstrated that there was a very

simple mechanism. Just by rewiring a network that you could get this so-called small

world phenomenon.

Where the Kevin Bacon thing, where you can take any-- You're right, from Kevin

Bacon, and this is actually the actor network, so you could say, starting with Kevin

Bacon can you construct a list of actors that costarred with each person that gets

you to any given actor. And the statement is that you are supposed to be able to do

that from a path of six. So that all the actors are supposed to be connected to Kevin

Bacon by six. Although maybe you guys don't even remember who Kevin Bacon is

anymore. Oh, you do? OK.

This rule works for anybody so just insert your favorite actor into that sentence. And
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it's important, just to mention that just because something is a small world network,

does not mean that it has power law distributions. It may be the case that many

power law networks also have this small world character, and I'd say maybe even

most of them, because some of those highly connected nodes are going to be

useful for connecting anybody to anybody else. But that's not required to get the

small world character. Any questions about that statement?

AUDIENCE: So you can go from this small world statement to any sort of strong statement

concerning connectivity?

PROFESSOR: Well stron-- I guess that the strong statement is that this property does not imply

that property.

AUDIENCE: You're not saying that the universe is true [INAUDIBLE] because it seems like, at

least the examples we've listed, ought to be small world.

PROFESSOR: Yeah. I agree. I think that this small world property, that's why I saying that, it's--

What I do not know, it's whether it would be possible to construct a power law

distributed network that does not have the small world property, but I would say is

that the ones that I'm aware of would have the small world property arm. Any other

questions about where we are?

So there's interesting properties of networks that we would like to explain. And I

would say that what this paper does, I think kind of convincingly, is that they

demonstrate that at least this model, and we'll get into the assumptions, does lead

to a power law distributed network.

The answer to the reading questions about whether both of these is strictly

necessary, I think was an interesting one, and I'd say that this gets into the wider

issue of there's a observation that is maybe interesting. And then we want to

understand why that might be, and then what you can do is you can write down a

model that leads to that behavior. We've already talked about. Does that prove that

the assumptions of the model are correct? No.

In this case, these are pretty generic features of lots and lots of the network. So
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when you read it you kind of believe that this is a dominant mechanism, but it very

much does not prove that these are the only, this is not at all the only way to get a

power law distributed network. I'd say that some of the language in the paper might

kind of lead you to believe that that is the case, and I think this is a standard logical

fallacy that we have to be careful of, and something I think that some the language

is a little bit dangerous.

The development of the power law scaling the model indicates that growth and

preferential attachment play an important role in networ-- I'd say that it's quite true,

but once again this question of-- This is certainly not a proof, that those

assumptions are relevant for any given network. Of course, in all of these cases, the

network does grow, and there is preferential attachment. But there are other things

that are also true, that may be important, for example, in determining exactly what

alpha is or in other things. And I think that as indicated that there are other ways of

getting power law networks without making the exact assumptions that are here.

But its, in my mind, it's probably a or d dominant mechanism in a lot of these

networks. I think it's a fine paper, but just remember that it doesn't prove that those

are the only two important things. Yes?

AUDIENCE: Just above the preferential attachments, I think you mentioned that you tried

different ways, and only the linearly one was

AUDIENCE: [INAUDIBLE].

PROFESSOR: Troubling.

AUDIENCE: [INAUDIBLE].

PROFESSOR: I agree. I agree. And what they assume in the model here is that the preferential

attachment goes linearly with the number of existing edges. And I would say that I

very much believe that preferential attachment is present in all those things, but I'm

sure that if you go and you measure it you're not going to find that its linear with the

number of edges. It's going to-- actually, I don't know what you'll find in each of
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those cases, but there's no reason to believe it has to be linear.

That being said it may be, the question is how strong of a deviation from linearity is

there? And then how sensitive is the power law behavior to that? And that's the kind

of thing that I'm sure that one of the 20,000 papers that have cited this paper in the

last 15 years address this issue. Yeah, but I mean, this is also why there are so

many papers that have cite-- It's like you read this paper , like oh, you know, it

would be really interesting to do this, tha-- and people have been following that

interest.

Let's go and-- I think that the derivation is a little bit tricky, and so I think it's worth

just walking through it. Especially since some people apparently couldn't even get

the equations, which is going to be a problem.

Maybe while we're on this question of preferential attachment-- How do you guys

feel about this question of networks within, say the transcriptional network of E. coli

or other cells? I mean do you think that these properties are relevant in the cell or--

So what would growth mean?

AUDIENCE: [INAUDIBLE].

PROFESSOR: So growth would correspond to adding a new gene. Does that ever happen?

AUDIENCE: Yes.

PROFESSOR: Can some given a possible mechanism by which a new gene is added to the

genome?

AUDIENCE: Duplication.

PROFESSOR: For example, duplication is common, right? eg. duplication. So what does this mean

for preferential attachment?

AUDIENCE: --duplicate the gene and it will probably also duplicate the promoter region, which

means--

16



PROFESSOR: Right. So this, I think, is very interesting. So duplication, in general you'll duplicate

both the coding region makes protein, but also maybe the promoter region that

specifies the regulation. So if you imagine you have some x here that is-- And we

can remind ourselves, are both the incoming and outgoing edges power law

distributed in transcription networks? No, I know this was in the pre-class reading,

but just in case.

So what you find is that some transcription factors regulate many genes, but we

don't have any proteins that are regulated by 200 genes, so in that sense typically

we have the things that are regulated, there's maybe some x1, x2, x3. And there

might be a few incoming edges, so the expression a gene is typically specified by a

few transcription factors. Whereas some transcription factors might have 100

outgoing edges.

So it's the outgoing edges that are power law distributed, and the ingoing are closer

to being plus on or so. So you can imagine that this guy might have 100 or so,

whereas over here some y transcription factor that is just regulating two genes, say

y1, and y2. Now, question is, if gene duplication occurs kind of randomly throughout

the genome, which transcription factor x or y is more likely to have a target that's

duplicated?

AUDIENCE: x.

PROFESSOR: x, all right. Interestingly, how does that scale with the number of targets?

AUDIENCE: Linear?

PROFESSOR: This actually is linear, right? So I'd say that gene duplication does give growth and

preferential attachment that is basically linear with a number of targets. It's

interesting I'd say I find this kind of observation quite interesting, and compelling,

and makes me feel kind of comfortable about this as a mechanism for some of the

global properties. I mean there's no selection, there's no way to explain the

interesting network motifs and so forth here, but I'd say just in terms of some

general properties I think it's interesting.
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Of course, once again not a proof. Evolution can do whatever it wants with these

gene duplication events, but also I would say not everybody finds this argument

very, very compelling. But I'd say I think it's kind of-- I get a warm fuzzy feeling

inside.

AUDIENCE: We're talking about transcription network, it's different from the other networks you

were talking about in that you also lose genes, and so is there any discussion--

PROFESSOR: Well you know, you could lose web pages, you can--

AUDIENCE: Are you losing them nearly as fast as you're adding them?

PROFESSOR: Yeah, I don't know. I find that lots of links to my web pages just disappear over time,

and I-- It's a reasonable question. I don't-- In some of these you say, oh well right,

so with the web has been growing a lot recently, and so then we'd say the birth

dominates over death there. Where if you talk about genome sizes along different

lineages, it certainly is not growing exponentially the way the web pag--

I think that that's fair and true, but we haven't really actually specified or made clear,

within a model what happens if you allow for birth and death. But I think that you

could introduce death and recapitulate these behaviors, so it's not-- I think just

because some nodes disappear, doesn't mean that we have to throw the whole

idea out the window. But in the presence of evolution this is all very complicated,

right? So you can't carry this argument too far.

AUDIENCE: So it's [INAUDIBLE].

PROFESSOR: Well what we're assuming is that there is some segment of DNA that's in front of the

gene that specifies-- gives instructions of when to transcribe the gene. So the

linearity is really just assuming that genes have the same rate of being duplicated

on average. And this is a very global property, so I think that it's kind of roughly-- I

would say it's the middle model that you would use, if you're had to write an old

model.

AUDIENCE: Is there anything in looking for evidence to support [INAUDIBLE].
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PROFESSOR: That's an interesting question. It's hard to know what it would even mean to collect

the evidence to support it in the sense that-- You're saying along different

evolutionary lineages, could we say that it's more likely to grow. Of course the other

thing to say is that, the rate of death would also scale linearly. In the sense that a

gene being stochastically removed from the genome should also scale linearly, so

it's not that you don't actually then expect there to be any systematic change.

I mean it's not as simple as just saying, oh the number of targets of a transcription

factor with many targets should grow faster. It's really that the expectation is that it

should be changing faster because both duplication and removal would both be

increasing. So I think the signature is not totally obvious in that sense.

So how many people actually tried to piece this derivation apart? Anybody? All right,

and were you happy with it at the end of your--

AUDIENCE: I think that--

PROFESSOR: --permissions?

AUDIENCE: --that I was a little bit iffy about.

PROFESSOR: There is like a crux of the climb at the end. So let's make sure that we can

understand what happened there. It's worth-- since we read the paper it's worth

trying to figure it out. So what we're going to assume is that we start with m0 nodes.

So they're going to be here, and the idea is it doesn't really matter how we start this

thing.

They might start out being unconnected, or they might he connected. But over time

the signature how we start is not supposed to be that important. What we're going

to do is at each time point we're going to add one more node. And as we do that

we're going to add m edges as well. So we then have the number of, we'll say,

nodes, N, as a function of time, is going to be equal to what?

[INTERPOSING VOICES]
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PROFESSOR: Right. This is just going to be-- we're going to start at m0 and we're going to add 1

each time, m0 plus 2. Number of edges is just going to be equal to the number that

we add each time point, times the time. So here we're assuming that we start out

with these nodes being unconnected.

Now we're given the assumption that there's preferential attachment, so that means

that the probability of connecting to some i-th node that has k edges is going to be k

to the i divided by the sum over all the edges. Yes?

AUDIENCE: Why is [INAUDIBLE]?

PROFESSOR: All right, so the assumption is at each time point we add a new node, let's say this

node, and with that we bring in some number, n, of new edges. So this could be 3,

and then we go randomly to 3 of the existing nodes. So each time point we add m

edges.

AUDIENCE: How do we necessarily add them to the new node? Like [INAUDIBLE].

PROFESSOR: I'm sorry I don't understa-- oh yeah right, so the assumption is that the new node is

indeed being connected to-- that all m edges that we're adding are to this new

node. So this is the linear preferential attachment that we were talking about.

So what we want to know first, is how after a node is connected, how is it that

number of edges will grow over time. What we know is that when it's first added it

has it exactly m edges, right? But then as new nodes come, then we'll maybe get

some more and then it'll grow.

And in particular we want to get-- We're told that it's going to grow as this differential

equation, so we want to kind of get to this. And the way to think about this is that, all

right well, how is it that the number of edges will change at each time point, so delta

k i. Well the expected number of edges that will be attached to some node, well

that's going to be m, this is the number of edges that were attached by this

incoming node, times this probability of attaching to this node. So this is the

probability of k i.
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Now this is in one time step. So this is really a delta k i. If we want, we could say

over some delta t, which is 1. So from that standpoint, we can actually then write it

as differential equation, where you say the change in this number of edges with

respect to time is indeed going to be equal to m times this guy here, which is the

number of edges that that node has at this time, divided by this sum over all those

edges. This is just kind of the expected number of edges to be added to that node

at each time point.

What does this thing-- What does that thing equal to? Yes?

AUDIENCE: --that equation, because it seemed like you just wrote the same equation on the line

above that line. You just substituted it--

PROFESSOR: I did.

AUDIENCE: OK, but [INAUDIBLE] wrote it as [INAUDIBLE].

PROFESSOR: Yeah, so this is kind of the discrete version of this differential equation.

AUDIENCE: Oh.

PROFESSOR: Right. Yeah that's right, that's right. And of course the beginning could be highly

stochastic but we're just thinking about in the limit of if it's deterministic. What is this

thing in terms of-- from here this is just a normalization constant, right? Because

each edge has to be attached somewhere, we're assuming it's linear with respect to

the number of edges at each node, right? And that means that for normalization we

have to divide by the sum over all those edges, the edges that each of the nodes

might have.

What is this thing equal to in terms of something else that we might have on the

board? Yeah?

AUDIENCE: These have edges with respect to [INAUDIBLE].

PROFESSOR: Right. So I guess the question is this, can we write this? Where E is a function of

time? Is that correct? So we're getting some shakes.
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AUDIENCE: Isn't it 2E?

PROFESSOR: Right. So it's actually 2E. Because what you notice here is that this is the sum over

all of the edges that each of the nodes have. But each edge is connecting 2 nodes.

So the sum over all these edge distributions is twice the number of edges. Now I

would say as a physicist, working in biology, my general attitude is that a factor of 2

here, factor of 2 there, doesn't really matter. But this factor of 2 actually is relevant

because it ends up determining the scaling over time. So not all factors of 2 are

created equal, and this is one that is worth paying attention to.

Does everyone here understand why this is 2 times the number of edges? k1 is

equal to 1, k2 is equal to 1, number of edges is equal to 1. Yeah.

AUDIENCE: So that means we're in an undirected network, if we were in a directed network,

then we would not have that factor of 2.

PROFESSOR: Yes. So we are indeed in an undirected, and I'd say in a directed network you have

to then be more careful about what you-- you have to specify the k's in and k's out.

So actually, already just by writing this we've already assumed it's undirected,

because we haven't specified what we mean by k.

We're here, but very conveniently we already know how many edges there are as a

function of time. This is just equal to m times t. So we get something that's very

convenient ki divided by 2 t. From here we can solve the differential equation. This

is what we want to show.

The fact that we're doing partials doesn't really matter, because it's just time here.

So it's really-- so we have d ki over ki, is equal to dt over 2t. This 2, really again, is

going to make a difference, because when we go and we integrate, we get the logs

and so forth. And so we get that ki as a function of time is going to grow with time,

with some constant c, proportionality to the square root of time. So if we didn't have

the half it would just be linear with time.

Now how do we know what c-- in general how do we get constants of integration in
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life?

AUDIENCE: Boundary conditions.

PROFESSOR: Yeah, boundary conditions, in this case, the initial condition. And what is it that we

know?

AUDIENCE: ki.

PROFESSOR: Right. So what we know is that ki, so this i-th node, when it's added at time ti, it

should be equal to what?

AUDIENCE: m.

PROFESSOR: Yeah. It's equal to m. So when it's first added, at some time ti, its number of edges

is equal to m. Because that's what we've assumed, is that we add a node and we

connect it randomly and other things, so it has m edges initially. So from this kot,

this is then equal to m times the square root of t divided by t initial. Where ti is the

time that i-th node was added to the network.

Are there any questions about how we got there?

So I think that this is relatively straightforward. The part that gets confusing is this

later part about the probabilities and keeping everything straight. And so what

Barabasi did next, is he said, all right, well, what we're going to do, is we're going to

talk about the probability, P. Now this is an actual honest to goodness probability.

The big P is actually a probability, and that's as compared to a probability

distribution, little p.

And I'll put in a little curly here thing, so it's a little p. This is saying if you want to get

an actual probability here, then you have to multiply that probability distribution

times some range delta k. If you want to know that the probability that some node

has between some number and some number of edges, then you multiply it by that

range. Right?

Probability distribution, this is an actual probability. And as befits an actual
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probability, we're going to say, OK the probability that the i-th node has k edges,

that are less than some value k. And remember this thing is actually a function of

time.

But we have an expression for ki as a function of time, it's equal to this. So we can

solve when we show that this probability is also the same as this other probability.

That the i-th node was added after some time t that can be written as this. So this is

saying, the probability that some random, say i-th node, has fewer than k edges, is

the same as saying it's the probability that the i-th node was added after some time,

t, which is this thing. Because the number of edges will grow over time for each of

these nodes.

Do you understand that kind of conceptual statement that was made there? Yes?

Any questions?

All right, so the probability that this i-th node was added after this time, is also of

course 1 minus the probability that it was added before that time. Whereas time,

little t here, this is at the time that you're actually looking. So this is saying, oh well, if

little t is 100, for example, it's saying all right, at that time point after I got 100 nodes,

we want to say, all right, what's the probably that some random i-th node was added

before this quantity. And this is just again some other kind of time, if you'd like.

I think this is the part that it is especially kind of weird. So this is also equal to this

thing. And I think reasonable people can argue about exactly what you should write

here, but let's figure out the basic argument first. So there's this probability is equal

to this thing.

So this statement is really that at some time t we have how many nodes? We have

m0 plus t nodes, right? So this is something here. And of course there are edges

going around doing things. And what we want to know is, what's the probability if I

grab one of them, we're going to call that the i-th node. What's the probability if I

grab one of them that it was added before sometime here. And it's useful to just

imagine this is as just being some time t, just so that we don't get confused by all

the symbols.
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You say, oh well, that probability is really just the probability-- well how many nodes

total do we have here, m0 plus t. How many nodes were there that were added

before this time t? Well that's going to be t, you might want to say t plus m0. There's

a question of whether you include those nodes that started there or not. Given the

equations that Barabasi wrote down, he kind of assumes that we're only counting

the nodes that were added later.

So I'd say if you want, you could either add an m0 up there, or get rid of this m0,

depending on what you like. But broadly there's this idea that we have this many

nodes, and this many of them were added for some time t. And that's how we get

this m squared t over k squared was just that time t divided by the total number of

nodes.

And this whole discussion about whether you count the initial m0 nodes or not, it

doesn't matter because we're going to take the limit as t goes to infinity, and that all

goes away. Are there questions about this? There is something kind of mind twisting

about this argument, even though we're really just picking big T objects out of

essentially little t objects, but somehow something funny goes on there. Any

questions about that?

AUDIENCE: Could you just go through the argument one more time?

PROFESSOR: Yeah, sure, sure Right so I think that what's confusing about it is the fact that we're

asking whether the i-th node was added before some time t. And this time t is equal

to something that's funny based on what we've just done. But it's useful to just ask,

if at time little t you look at this network and I ask you, all right, was it added before

this time, big T. Let's just for concreteness say m0 is equal to-- we start with 10

nodes. And we say, OK, at time t equal to 100, I ask you, what's the probability that

if I grab a random node, what's the probability it was added before some time big T

equal 10.

Well you would say, very roughly actually. We can say let's actually, we can even if

you'd like, say we're not going to count-- we're not going to count those m0 initial
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nodes. So we're just going to be looking at nodes that we added later, if you'd like.

And then when you would say, all right well, at time t 100, we've added 100 nodes.

And I'm asking, if I grab one of the nodes, what's the probability that the node I grab

was added in the first 10 time steps. Well you'd say, it's going to be 10%, because

there were 10 nodes that were added before time big T, and we added 100, so it's

really just this divided by this. And with the question of whether you want to include

m0's or not.

So I think that that argument is surprisingly straightforward, but somehow it gets

really confusing is that the time t we're referring it's depending on the k's and t's and

so forth. But that's a way of keeping track of how are things scaling as a function of

time. But if you boil the argument down to this, then it makes sense, but then of

course then you look back at this and you get confused you again. Which is how I

feel every year when I prepare this lecture, but I think it all does make sense if you--

Any questions about this argument or that argument or any part of it? Yes?

AUDIENCE: So the ti's are very important [INAUDIBLE]?

PROFESSOR: Yes. So this is just saying that if I pick some random node, we're calling it the i-th

node. I'm asking what's the probability that the time that was added was before

something. So this is not one of the variables, and you'll see the ti doesn't appear

down here. Because this is just saying-- I'm asking you, if I grab some random

node, the i-th node. I'm asking you, what's the probability that it was added before

some other time, which is all this. And what you can see is that it's a function of the

time that we look, because if I go to longer times you know then indeed this

probability should it go-- What should it do?

AUDIENCE: [INAUDIBLE].

PROFESSOR: OK, but it depends on k's as well, right? What do I want to say?

Ultimately what we see here is that as time goes infinity, so after a long time, then

we reach this stationary distribution where the base structure of the network is not
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changing anymore. And that's because there's a t in both the numerator and

denominator. So then the only thing that is left is this behavior as a function of k.

And this is really saying that the probability that some node was added before some

time, is kind of the same as saying that, well, that you have a lot of edges. And

that's how we got here to begin with, because the nodes that were added early end

up with a lot of edges. This is the so-called rich get richer phenomenon. So if you're

sitting on a manuscript, and you're not submitting it for publication you should get on

it because the earlier that it's published the more citations it's going to get.

But this is saying that the probability that some random node has a small number of

edges is the same as that the probability that the node was added late. And that

makes sense, because if it's added late it doesn't have very many edges, hasn't had

time to grow. And then from those calculations you get it at this degree distribution.

Yes?

AUDIENCE: So for this analytical [INAUDIBLE] we're assuming the links could be [INAUDIBLE].

PROFESSOR: Yes. So we're taking, in principle it's a discrete problem and converting it into a

differential equation. And it's an interesting question of I don't know how big of an

error this ends up making, and of course this expression doesn't actually end up

having integers. But this is a way of making it so that the errors don't grow or so,

right? I think that it basically works. If you'd like you could actually do the simulation

with all the discrete-- I think that is actually going to be the stochastic dynamics that

end up being more relevant than the integer kind of issue, but I haven't actually

looked into that though. Any other questions about that so far? Yes?

AUDIENCE: [INAUDIBLE].

PROFESSOR: So there's no loss of edges, no loss of nodes, strictly verboten. I spent a lot of time

trying to plan an upcoming trip to Germany last night so German is on my mind.

So are we done yet incidentally? Nearly right? Because we have-- What we really

wanted is the degree distribution, not this probability. So we have to take a

derivative still, but as t goes to infinity, regardless of how you treat the m0's, actually
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what we-- maybe we'll take the derivative first. So this probability density is going to

be the derivative with respect to k of the actual probability here.

So we take a derivative, this one derivative that nothing happens, case squared, it's

going to turn into a k cubed. So we get 2m squared t over k cubed, we still have the

t plus m0, but when we let t go to infinity, so after this thing has reached its

stationary distribution, then we end up just getting 2m squared over k cubed. I just

want to be clear this is to the k.

The key feature here is that the probability distribution goes as 1 over k cubed.

What is interesting is that when I first read the paper I actually thought that this

exponent here would be a function of the linearity of the preferential attachment. So

I actually-- and of course they say that it's not true, but when I was halfway through

the paper I thought, oh well, if you just let this go as some power to the beta, or so,

that you would maybe get something like this was 2 plus beta-- I thought something

like that, but apparently it's not true.

That if you do not have linear attachment here then you just don't get power law

distributions. They suggest other ways that you could maybe get different

exponents, which is very relevant given the fact that different real networks indeed

have different exponents. But I'd say that their proffered explanation, which is to

include directed edges, feels unsatisfying because not all networks are directed.

And this network here is not directed, it has next exponents closer to 2. So you

really want to have other mechanisms. But this is as we mentioned, is it's a thriving

field and people have explored many different aspects of this problem.

Are there any other questions about this derivation, how we got there, how

convincing maybe you think it should be or not be?

So I want to just spend the last five minutes of the class kind of setting up the

discussion of how we should be searching for network motifs. In particular there's a

natural question which is, we have to decide what the right null model is, in terms of

deciding what the expected frequency of a network motif, like a feed forward loop

might be.
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So first of all, why is it that we maybe should not use an Erdos Renyi network? Yes?

AUDIENCE: Because it's not very good for handling directed networks?

PROFESSOR: Right. So you'd say, oh, not very good-- I can maybe make-- there's a clear analog

to it-- you could take a random undirected ER network and say put arrows randomly

on each-- I mean I think that there's a natural ER version of a directed network.

AUDIENCE: There are constraints.

PROFESSOR: Like what?

AUDIENCE: Like when you [INAUDIBLE] duplication, you don't randomly assign the edge.

PROFESSOR: That's right. OK, so one thing is that it may be that biologically there are constraints,

but that should manifest itself somehow. In the sense that if, you know all that may

be well and good, it may be true, what you're saying, but if we go and we look at a

transcription network, if it looks like an ER network, then I would say it just doesn't

matter. The fact that there's microscopic things going on, I mean if at the end of the

day it looks like an ER network, then maybe it's fine anyways, right?

AUDIENCE: Hum.

PROFESSOR: Or maybe not. You can argue either way.

AUDIENCE: It depends on what you want. If a particular motif occurs a lot it might be because

it's selected for it, but it's not what you were-- --it's for some other reason.

PROFESSOR: That's right. So this is an important point, that I would say that in Erdos approach,

he basically says if we see a network motif more frequently than we would expect

based on some null model, some null network, then it's kind of prima facie evidence

that maybe evolution was selecting for it for some reason. And what you're saying is

that it could be there's a microscopic mechanism that just leads to those things

happening, and so it doesn't have to be selection, it could be just due to the

mechanistic processes below. And I think that's a fair concern.
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And it's related to a lot of these other things, in that just for example, duplication will

naturally lead to something-- if you start out with x regulating Y, and Y is duplicated

then now you have x regulating some Y1 and also some Y2. And this is the

beginnings of a network motif, and so it's a reasonable thing to worry about but

maybe we can correct for at least a majority of this by using the proper null model.

At least that would be the hope.

AUDIENCE: Well, that's why you don't want necessiarilly--

PROFESSOR: OK, that's fair. But then the question is, what you null model should we be using?

Yeah?

AUDIENCE: So you feel like having the microscopic constraints does not necessarily need to be

in the null model. I feel we can have a null model but without using the microscopic

constraints and then just say, oh well that's another possibility for why we might

have these divergences. I don't think they need to be in the null model.

AUDIENCE: Yeah, it's just that then you can't say anything about evolution.

AUDIENCE: Well fair, but I don't should have to-- I don't think you have to say something about

evolution afterwards necessarily.

PROFESSOR: Yeah, and I think that this question about how strongly you can argue that evolution,

selective or something, and this is a little bit of a judgment call, because most of

these evolutionary arguments are not ironclad, it's more a matter of making you feel

kind of comfortable with looking for what the evolutionary explanation might have

been. This is just the nature of looking at historical science, right? I mean, you can

speculate about what would have happened if Napoleon had done something else,

or whatever. But it's a speculation.

Of course the hope is that we can collect multiple pieces of evidence that make us

more and more comfortable with it and in some cases we can do laboratory

evolution to get more comfort, but laboratory evolution doesn't prove that that's

what happened a million years ago either. But I'd say it's more the accumulation of

evidence to make you feel comfortable with an argument.
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evidence to make you feel comfortable with an argument.

But you know, let's first make sure we understand what the null model is, and then

on Thursday we'll decide, well we won't decide, we'll discuss what we think that

means about evolution. Yeah?

AUDIENCE: So I think what we the other part of the appendix that we read about the in and out

distributions is important for the null model.

PROFESSOR: Yes.

AUDIENCE: Because it seems to me that the Erdos Renyi network might be a good model for

the in distributions, but not for the out distributions.

PROFESSOR: That's right. And I think this is really important. I think that it's clear that the actual

transcription network of E. coli, for example, is not well described as an Erdos Renyi

random network, but then it does beg the question of what should we be using. And

you could say, well, we just make a power law network, but then you say, oh, but

there's the in degree, and the out degree. How much do you want to keep track of

that? And I think that there is a fairly strong argument that what you should do is

what they call this degree preserving network.

In particular what that means is that you take the real network, so you take the

actual network that you're going to be analyzing, and there is some actual degree

distribution. So there's 1 node has-- so k1 might be 106, k2 might be 73, dot, dot,

dot, dot, up to kn which is equal to 1. And of course I'm not even talking about it

being directed, but you do the same thing with directed.

But then what you do, is you kind of mix things up. So you start with a real network

and then you do something to randomize it. And it's a rather clever scheme, I'm just

going to describe it briefly here and then we'll talk more about it on Thursday.

What you do is you take all of the actual-- so let's say we have x1, some x2 and

here we have a Y1, Y2, Y3, now let's say that these guys are regulating something

like this. What you do is you take two edges randomly, we'll pick this one that one,

and what we do is we swap the targets. So what we do is we make this guy come

31



over here, and then this one comes over here. So now what we do is we erase this,

and we erase this, now we have a new network, but intriguingly, the degree

distributions for both incoming and outgoing edges are identical to what we had

before this.

Every guy has the outgoing edges, incoming edges, but they're just different

targets. So if you just do this procedure many, many times then what you do is you

achieve some randomized version of the real network. And then what you can do is

you can ask how many feed forward loops are there. How many, this, that--

And so there's a fair argument that this is in some ways the proper null model to be

asking the question in. And indeed, for example, there are many more feed forward

loops than there would be in an Erdos Renyi, but still what you see is that you lose

many feed forward loop. So this then the argument for feed forward loops being

selected for. We'll talk about this and we'll quantify it on Thursday, but I'm available

for the next half hour if anybody has any questions.
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