
Holography Duality (8.821/8.871) Fall 2014

Assignment 2

Sept. 27, 2014 Due Thursday, Oct. 9, 2014

• Please remember to put your name at the top of your paper.

Note:

• The four laws of black hole mechanics were originally formulated in

Bardeen, Carter and Hawking, “The Four Laws of Black Hole Mechanics”,
Commun. math. Phys. 31, 161-170 (1973).

• For a a recent review of black hole uniqueness theorems, see

P. Mazur, “Black Uniqueness Theorems”, hep-th/0101012.

• For reviews of the large N expansion of gauge theories, see

– S. Coleman, “1/N”, in Aspect of Symmetry, Cambridge Univ. Press,
(1985).

Highly recommend you to read p.368-p.378. Coleman’s discussion is very
elegant and transparent.

– J. Maldacena, “TASI 2003 Lectures on AdS/CFT”, arXiv:hep-th/0309246.

See Sec. 2. This is a rather short discussion, but summarizes all the
important elements.

– A. Manohar, “Large N QCD”, arXiv:hep-ph/9802419.

The discussion by Manohar contains pedagogic introduction to all the basic
ingredients and also extensive discussion of applications to QCD.
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Problem Set 2

1. Hawking temperature from analytic continuation (10 points)

Consider a general class of black hole metrics which can be written as

ds2
1

= −f(r)dt2 + dr2 + · · · (1)
h(r)

where f(r) and h(r) have a first order zero at the horizon r = r0 and the other
part of metric represented by · · · is regular there (or does not vanish). Show
that the Hawking temperature of such a black hole is given by

TH =

√

f ′(r0)h′(r0)
. (2)

4π

2. Kerr-Newman metric (25 points)

A most general black hole in asymptotically flat spacetime is characterized by
its mass M , angular momentum J and charge Q. Such a metric is called Kerr-
Newman metric, which can be written as

ds2
ρ2∆

= −
Σ

dt2 +
Σ

ρ2
sin2 θ(dφ− ωdt)2 +

ρ2
dr2 + ρ2dθ2 (3)

∆

where

ρ2 = r2 + a2 a2
J

cos θ2, ∆ = r2 + +Q2 − 2Mr, a ≡ (4)
M

Σ = (r2 + a2)2 − a2∆sin2
a

θ, ω = (r2 + a2 −∆) (5)
Σ

In the above expressions, for notational simplicities, I have set GN = 1. There
is also an electric potential, which I have suppressed.

(a) Show that the Hawking temperature temperature TH , the horizon value
r+ of the radial coordinate r, the horizon area A, and the angular velocity
Ω at the black hole horizon can be written as

r+ = M +
√

M2 − a2 −Q2 (6)

A = 4π(r2 2

+ + a ) (7)

2(r
TH =

+ −M)
(8)

A
4πa

Ω = (9)
A

Note that none of the above should require extensive calculation and to
calculate the temperature it is simplest to use (2).

2



(b) Note that in order for r+ to be real we should have

M2 ≥ a2 +Q2 . (10)

A black hole which saturates the inequality is called extremal.1 Show
that an extremal black hole has zero temperature, but nonzero entropy.
Calculate its entropy. Note that the black hole third law does not prevent
a nonzero zero-temperature entropy and thus is less stringent than the
third law of thermodynamics.

(c) Now set J = 0 and consider an extremal charged black hole with M = Q.
Write down the metric for this special case explicitly and show that the
horizon lies at an infinite proper distance away. Show that near the horizon,
the geometry reduces to AdS2×R

2, where AdS2 is a two-dimensional anti-
de Sitter spacetime. (For a nonextremal black hole, the near horizon region
is always Rindler.)

3. Laws of black hole Mechanics (30 points)

Consider a Kerr-Newman black hole in asymptotically flat spacetime character-
ized by mass M , angular momentum J and charge Q. In addition to (6)–(9),
the electric potential Φ of the black hole horizon can be written as

4πQr
Φ =

+
(11)

A

(a) Using (6)–(9) and (11), verify the first law of black hole mechanics. (Again
this should not require extensive calculations.)

(b) Consider a rotating black hole with mass M and angular momentum J ,
but Q = 0. Suppose that such a black hole loses energy and all of its
angular momentum by some classical process. Using the second law of
black hole mechanics to show that at most 29% of the initial mass can be
radiated away.

(c) Consider a nonextremal charged black hole with J = 0, i.e. M > Q.
We want to reduce the temperature of the black hole to zero by throwing
particles at it. Clearly in order to reach extremal limit the particles we
throw in should have their charges q greater than their mass m. Also
in order for a charged particle to be able to fall into the black hole, the
gravitational attraction should be no smaller than the repulsive electric
force, which implies that

qQ ≤ Mm . (12)

1A solution for which (10) is violated does not have a horizon. Instead it has a naked singularity
(i.e. a singularity not hidden behind an event horizon). You should convince yourself of this,
although I will not ask you to show it.
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The two conditions thus lead to

q
1 <

M
≤

m Q

The above expression implies that as the extremal limit is approach
the window of particles one can use becomes smaller and smaller. S
that using this procedure it takes an infinite number of steps of reach
extremal limit.

(13)

ed,
how
the

4. A gas of radiation and maximal entropy bound (20 points)

Consider a gas of massless particles confined inside a spherical box of radius R.
You can assume that the particles are all scalars, non-interacting and there are
Z species of them.

(a) Express the entropy of the system in terms of the total energy E.

(b) Now consider the energy of the gas is such that the system is on the verge
of forming a black hole of size R. Find the ratio of the entropy of such a
gas to the entropy of a black hole of size R. You will find that the ratio is
always much smaller than 1 as far as R is greater than the Planck length
lp (which is about 10−33cm).

(c) Now let us keep the energy density ρ of the system fixed (e.g. by keeping
T fixed) and vary the system size R. What is the maximal size RM the
system can have before it collapses into a black hole? Find the ratio of
the entropy of such a gas with size RM to the entropy of a black hole of
the same size. You will find the ratio is much smaller than 1 as far as the
energy density ρ ≪ m4

p, where mp is the Planck mass.

Of course at the energy density of order m4
p we would expect quantum

gravitational effects to be in full display and could not really say anything
about such a system.

(d) Show that for both (b) and (c), you can always dial the number of species
Z big enough so that the entropy of the gas becomes larger than that of a
black hole and thus violates the maximal entropy bound. Find the minimal
value of Z for which this happens for both (b) and (c).

Clearly such a value will depend on the size or energy density of the system
and is astronomically big for an ordinary system (i.e. energy density not
close to Planck density).

5. Wilson loop in the large N limit (15 points)

Consider a Wilson loop in an SU(N) gauge theory along some closed loop C,

WR(C) =

〈

TrP exp

(

ig

∮

Aµdx
µ

C

)〉

(14)
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where A = Aa a
µ µTR with T a

R SU(N) generators in a representation R and 〈· · ·〉
denotes the expectation value in some state (say vacuum or thermal state).

(a) In the large N limit, find the relation between WF (C) and WA(C) where
subscript F and A denote the fundamental and adjoint representations
respectively.

(b) Now consider a confining theory. Remind yourself (or find out) how a
Wilson loop should behave in such a theory. What does (a) imply about
the string tension for a fundamental and an adjoint quark? Try to give an
intuitive explanation for the result.
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