
Holography Duality (8.821/8.871) Fall 2014

Assignment 3

Oct. 10, 2014 Due Friday, Oct. 24, 2014

• Please remember to put your name at the top of your paper.

Note:

• The classical string action and light-cone quantization are discussed in many
places, for example,

– Zwiebach, “A First Course in String Theory,” Chap. 6-13.

Barton’s discussion is very pedagogic and has many nice details, which
should be very useful for you to build up intuitions. Chap. 14 is a nice,
simple introduction to superstring.

– Green, Schwarz and Witten, “Superstring theory,” Vol. 1, Sec. 2.1 and
2.3.

– Polchinski, “String Theory,” Vol. 1, Sec. 1.2 and 1.3

– Polchinski, “Joes Little Book of String,” available at:

http://www.kitp.ucsb.edu/sites/default/files/users/joep/JLBS.pdf

This is Polchinski’s class notes which aimed to provide a watered-down
version of his beautiful, although some formal book. The notes also contain
a simple introduction to superstring at the end.

• D-branes are discussed in Chap. 15 of Barton’s book mentioned above. Polchin-
ski’s book Chap. 8 introduces D-branes via toroidal compactification and T-
duality, which lies outside what we covered in lectures. Polchinski’s recent
lecture notes mentioned above also contains a nice discussion of D-branes.

• Chap. 4 of my book with Krishna and other friends, Gauge/String Duality,
Hot QCD and Heavy Ion Collisions published earlier this year by Cambridge
University Press (expanded from a previous review arXiv:1101.0618), was an
attempt to convey key conceptual aspects of string theory to people outside
string theory without going into any technical details. One potential pitfall of
such an attempt is that it might be too trivial for experts, while too concise
(or lack of details) for non-experts, thus ending up being useful for nobody. I
would greatly appreciate your candid comments on that chapter to get a sense
of how successful our experiment is.
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Problem Set 3

1. Conserved World-sheet currents (20 points)

Consider the Polyakov action for a string moving in a D-dimensional flat space-
time in the conformal gauge (i.e. the worldsheet metric γab = ηab)

1
S = ∂

4

∫

d2σ ∂aX
µ aXµ (1)

πα′

The above action has global symmetries corresponding to the Poincare sym-
metries of the target spacetime. Find the corresponding worldsheet conserved
currents associated with these symmetries and give physical interpretation of
them.

2. Virasoro algebra (35 points)

In lecture we showed that for open string with Neumann boundary conditions
moving in a D-dimensional flat spacetime, the equations of motion for Xµ can
be solved to give

Xµ = xµ + 2α′pµτ +
√
2α′

∑

n 6=0

αµ
n e−inτ cos nσ . (2)
n

We will work with the light-cone gauge X+ = 2α′p+τ . Below for convenience
we will also use the notation α

µ
0

√
≡ 2α′pµ.

(a) Show that in the light-cone gauge, the constraints Tab = 0 can be solved
explicitly by expressing p− and α−

n in terms of modes of transverse coor-
dinates. In particular, introducing transverse Virasoro operators

1
Ln =

∞

2

∑

i m

∑

: αi
n−mα

i
m : (3)

=−∞

where i sums over all transverse directions and :: denotes normal ordering,
show that (for all n including n = 0)

α− 1
n = √ (Ln aδn,0) . (4)

2α′p+
−

a is a normal ordering constant which we argued to be given by a = D−2
24

using zeta-function regularization. n = 0 equation of (4) gives the mass-
shell condition we discussed in detail in lecture.
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(b) Using the commutation relations of αi
n, which are

[αi
m, α

j
n] = mδm+n,0δij , (5)

show that the Viraroso operators introduced in (3) satisfy the Virasoro
algebra

c
[Lm, Ln] = (m− n)Lm+n + (m3

2
−m)δm+n,0 (6)

1

with
c = D − 2 . (7)

(c) Find the commutators
[Ln, X

i(τ, σ)] = (8)

and show that Ln generate diffeomorphism on the worldsheet, i.e.

ǫ[Ln, X
i(σ, τ)] = X i(σ+ + ǫξ+, σ− + ǫξ−)−X i

n n (τ, σ) (9)

where ǫ is a small constant parameter and

σ± ≡ τ ± σ, ξ±n ≡ −ieimσ± . (10)

(d) Give physical interpretation of what you found in (b) and (c). Could you
explain why Ln should generate the specific diffeomorphism of equation (9).

Note: Virasoro algebra is arguably the most important algebra in string theory.
In the light-cone gauge, for consistency we should verify that the conserved
charges for Lorentz symmetries derived in Prob. 1 should indeed satisfy the
Lorentz algebra. The Virasoro algebra plays an important role in this calcula-
tion and one finds that the Lorentz algebra is recovered only for D = 26.

3. Scalar modes as transverse fluctuations of D-branes

In lecture we mentioned that massless scalar fluctuations of a D-brane can be
interpreted as fluctuations of transverse positions of the D-brane. While this
may seem intuitively simple, the physical implications are profound and lie
at the heart of magic of string theory. So it is perhaps useful to review the
logic once more here. We started by imposing Dirichlet boundary conditions on
some of the coordinates of an open string. We then worked out the most general
classical solutions of a string under such boundary conditions. At this stage (i.e
classically) the boundary conditions are rigid and strings are simply restricted
to move on a submanifold in spacetime. The magic comes when we quantize
the string and discover that there is a massless scalar field for each Dirichlet
direction. Now these scalar fields are interpreted as the collective coordinates
for the shape of the submanifold. In particular, their condensates correspond to
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translating this submanifold around in transverse spacetime directions. Thus
the original rigid boundary conditions have now turned into a full dynamical
object, which can fluctuate and move around.

This is in fact the same reasoning which leads to the realization that string
theory gives rise to quantum gravity. Classically we just describe a closed string
propagating in a rigid spacetime (for example, a flat Minkowski spacetime).
Upon quantization, we discover a masslees spin-2 mode which is interpreted as
a graviton. Now the spacetime in which string propagates is no longer rigid,
but can fluctuate and becomes dynamical; in other words, we have quantum
gravity. Also condensates of gravitons can lead us away from the flat spacetime
to a general curved spacetime.

A remarkable thing is that string cannot just propagate consistently on any
given spacetime; Weyl invariance on the worldsheet should be maintained, which
in turn determines the dynamics for the spacetime in which the string propa-
gates. Imposing Weyl invariance for closed string then leads to a generalized
Einstein equations which the metric and other possible background fields should
satisfy. Even for flat spacetime, this requires D = 26 for bosonic string.1

For the case of an open string with Dirichlet boundary conditions, the Weyl
invariance determines the dynamics of the motion of the D-brane. Consider,
for example, a D0-brane, i.e. with Neumann condition in the time direction X0

and Dirichlet conditions in all other directions X i. One can show that if we
impose the boundary condition

X i(τ, σ = 0, π) = f i(X0(σ, τ)) (11)

which, according to our interpretation above, should describe the motion of the
D0-brane following a trajectory xi = f i(t). We use xi and t to denote spacetime
coordinates to distinguish from X i and X0 which denote the corresponding
fields on the string worldsheet. The Weyl invariance of the string worldsheet
then implies that f i(t) should satisfies the equation

ḟ i

∂t√ = , ˙0 f i ≡ ∂tf
i(t) . (12)

1− ˙(f i)2

The above equation precisely corresponds to that of a point particle with an
action

S =

∫

dt

√

1− (ḟ i)2 . (13)

1In the light-cone gauge we were using, this condition appears from imposing Lorentz invariance.

In other covariant gauges in which Lorentz invariance is maintained throughout, then the condition

D = 26 comes from imposing Weyl invariance on the worldsheet.
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I will not ask you to derive (12), although I was very tempted to. If you are
interested, you are welcome to give a try. You can also consult the paper: R.
Leigh, Mod. Phys. Lett. A4, 2767 (1989) for a derivation of a generalization
of (12).

4. Separation of D-branes as Higgs mechanism (30 points)

Consider two D24-branes sitting at X25 = 0 in D = 26 dimensions. There are
four different types of open strings labelled by their end points.

(a) Consider separating one of the branes to X25 = a. Write down the mode
expansion for an open string stretched between the two branes.

(b) Work out the excitation spectrum for an open string stretched between the
two branes.

(c) Now focus on the N = 1 modes for all types of open strings, where N is the
total excitation number. These are the massless modes when the branes
are coinciding and can be described by a gauge field Aα and a scalar field φ

in the adjoint representation of U(2). When the branes are separated some
of these modes become massive as you have found in (b). Show that the
spectrum of these modes (i.e. mass and degeneracies) is consistent with
that from the Lagrangian

1L = Tr

(

−
4
FαβF

αβ − 1
(Dµφ)(D

µφ)

)

(14)
2

in a Higgs phase with expectation value

φ =

(

v 0
0 0

)

a
, v ≡ . (15)

2πα′

In (14) the Tr is over U(2) matrices.

Note: Lagrangian (14) is defined in the worldvolume of the D24-branes,
i.e. (24 + 1)d. It can be obtained from the pure Yang-Mills Lagrangian
in D = 26 by taking A25 = φ and letting all fields to be independent of
x25. This procedure is called dimensional reduction. The reason for this is
intuitively clear; we have discussed earlier that for D25-branes (i.e. Neu-
mann boundary conditions in all directions), based on general principle,
the low energy theory for the massless vector modes should be given by a
Yang-Mills theory. When changing some directions to Dirichlet boundary
conditions, the only difference is that we can no longer have momenta in
those directions.

For N Dp-branes, the corresponding Lagrangian can be obtained by doing
dimensional reduction of a pure Yang-Mills theory with gauge group U(N)
on 25− p transverse dimensions.

5



(d) Now consider N Dp-branes. Write down the expectation value for the
scalar fields in this theory corresponding to these D-branes sitting respec-
tively at

~X(k) (
= (

k)
a1 , · · · (k)

, a25−p), k = 1, 2, · · ·N (16)

where the superscript k labels different branes and ~X(k) denotes the trans-
verse position for each brane.

5. Mass of a D-brane (15 points)

The mass of a D-brane can be obtained by summing over vacuum diagrams of
open strings. (In the closed string case summing over all the vacuum diagrams
should give the cosmological constant.)

(a) Show that this implies that the mass of a D-brane is proportional to 1
gs
,

where gs is the string coupling.

(b) Show that in the limit of weak string coupling, the gravitational interaction
among D-branes is negligible compared to its mass. Thus we can treat
parallel D-brane configuration as almost stable.

(c) Now consider a stack of N D-branes. Show that its gravitational effect can
no longer be ignored when N becomes sufficiently large. Give the order of
N in terms of gs when this happens.
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