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Lecture 19

3.1.5: MASS-DIMENSION RELATION

We now consider the following questions:

1. How the conformal dimension of an operator is mapped to the bulk?

2. How to interpret modes of bulk field in the boundary theory?

On gravity side, the action generally has the form:

1
S =

2κ2

ˆ
dd+1x

√
−g (R− 2Λ + Lmatter) 2κ2 = 16πGd+1 (1)

where the matter Lagrangian is

1Lmatter = −
2

(∂Φ)2 − 1
m2Φ2 − V (Φ) +

2
· · · (2)

where V (Φ) includes non-linear terms.
Consider small fluctuations of Φ and gMN , then it is convenient to normalize them canonically:

Φ→ (0)
κΦ gMN = gMN + κhMN (3)

∼ 1/2
Remember in the matching of parameters, κ Gd+1 ∼ N−1 in the unit of curvature is small in large N limit. Thus
for Φ, hMN ∼ O(1), nonlinear terms are O(κ) or higher and can be neglected. At leading order, (2) becomes a
quadratic action in AdS, i.e. free theory.

We use a massive scalar field for illustration. The bulk quadratic action for Φ is

1
S = −

2

ˆ
dd+1x

√
−g(gMN∂MΦ∂NΦ +m2Φ) +O(κ) (4)

where

ds2 R2

= ( dt2 + d~x2 + dz2) xM = (z, xµ) (5)
z2
−

Then equation of motion of Φ is
1√
−g

∂M (
√
−ggMN∂NΦ)−m2Φ = 0 (6)

Given translation symmetries in xµ directions, we make the ansatz for the solution:

k
Φ( , xµ) =

ˆ
dd

z eik·xΦ(z; k) (k x = ηµνk
µxν) (7)

(2π)4
·

Substitute this ansatz into (6), we get

zd+1∂z(z
1−d∂zΦ)− k2z2Φ−m2R2Φ = 0 (8)

where kµ ~= (ω, k) and k2 = −ω2 ~+ k2. Considering asymptotic behavior of Φ as z → 0, one can drop the term
involving k2 that is O(z2) in (8), then get

z2∂2
zΦ + (1− d)z∂zΦ−m2R2Φ = 0 (9)

This is a homogeneous equation, which can be solved by power function. Let Φ ∼ z∆, (9) reduced to

∆(∆− 1) + (1− d)∆−m2R2 = 0 (10)
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which implies two solutions for ∆

d
∆ =

2
±
√
d2

+m2R2 (11)
4

Introducing the convention

d
∆ ≡

2
+ v v ≡

√
d2

4
+m2R2 ∆− ≡

d
12)

2
− v = d−∆ (

we can write down the asymptotic behavior of Φ:

Φ(k, z) = A(k)zd−∆ +B(k)z∆ z → 0 (13)

Φ(x, z) = A(x)zd−∆ +B(x)z∆ z → 0 (14)

Remarks

1. The exponents are real provided that
2

2R2 d
m ≥ − (15)

4

One can show that a theory is stable if and only if (15) is satisfied. When this condition is violated, there
exist modes exponentially growing in time (see Nabil’s notes) and it is called Breitenlohner-Freedman
(BF) bound. Compare with the equation of motion in Minkowski spacetime:

∂2Φ−m2Φ = 0 =⇒ ω2 ~= k2 +m2 (16)

~ ~and if m2 < 0, continuity of k makes some |k|2 < |m2|, thus ω2 < 0 and the solution will be

Φ ∼ e|ω|t + e−|ω|t (17)

This is a tachyonic solution which will cause instability of the system and therefore must be excluded
in the spectrum. This can be seen by noticing that in a scalar QFT in flat spacetime with general
potential V (Φ), the vanishing first derivative of potential determines the vacuum expectation Φc, i.e.
V ′(Φ 2

c) = 0, and the second derivative is the mass square of the fluctuation, i.e. V ′′(Φc) = m < 0,
which implies the vacuum on the peak of the potential is unstable. However, in AdS, due to spacetime

~curvature, constant modes (like those k = 0 in flat spacetime) are not allowed. A field is forced to have
some kinetic energy, which can compensate some negative m2.

2. AdS has a boundary and light rays reach the boundary in a finite time, i.e. energy may be exchanged
at the boundary. We need to impose appropriate boundary conditions to have a well-defined notion of
energy, which is also explained in detail in Nabil’s notes.
Before we go any further, let me review some facts of canonical quantization of Φ in curved spacetime.
If we expand Φ in term of a complete set of normalizable modes {ui}, we must require them to satisfy
the appropriate boundary condition. The normalizability is defined by finiteness of the following Klein-
Gorden (KG) inner product:

(Φ1,Φ2) = −i
ˆ

dzd~x
√

Σ

−γnµ(Φ∗1∂µΦ2 − Φ2∂µΦ∗1) (18)

where Σ is a spacelike hypersurface with induced metric γij and unit normal vector nµ. This inner
product is independent of choice of Σ if flux leaking through boundary is zero:

√
γzn

µ
z (Φ∗1∂µΦ2 − Φ2∂µΦ∗1)→ 0 (z → 0, nµz∂µ = z∂z, γz is induced boundary metric) (19)

because in this case the difference of two choices of Σ will be a bulk integral of the divergent of current
(Φ∗1∂µΦ2 − Φ2∂µΦ∗1) by Gauss Law:

δ(Φ1,Φ2) = i

ˆ
dd+1x

√
−

δΣ

−g∇µ(Φ∗1∇µΦ2 − Φ2∇µΦ∗1) (20)

where δΣ means the bulk region surrounded by two Σs. Since

∇µ(Φ∗1∇µΦ2 − Φ2∇µΦ∗1) = Φ∗1∇2Φ2 − Φ 2 2 2
2∇ Φ∗1 = Φ∗1m Φ2 − Φ2m Φ∗1 = 0 (21)
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we see the KG inner product is independent of choice of Σ. The boundary condition (19) is also important
for a well-defined notion of energy (Nabil’s notes) because it implies the energy conservation in AdS (no
leaking through boundary). In the quantization of QFT in curved spacetime, generally we can expand
a scalar field Φ as

Φ(x, z) =
∑

φn(x, z)an + φ∗n(x, z)a†n (22)
n

where n represents all quantum numbers, φ s

)
n i

(
the normalizable modes, which is normalized as (φn, φm)KG =

δnm, and an(a†n) is the corresponding annihilation (creation) operator. As explained in first chapter, the
definition of an(a†n) is not uniquely defined. Bogoliubov transformations of an(a†n) will give new sets of
annihilation (creation) operators that correspond to different vacua.
Simple calculation shows that for real v, ∆ ≥ d/2 and hence

z∆mode :alw{ ays normalizable

d ∆ normalizable 0 ≤ v < 1
z − mode:

non-normalizable v ≥ 1

We can also check that only normalizable modes satisfy boundary condition (19), which suggests we can
have well-defined energy in quantization and Hilbert space. Regarding different values of v, we can get
different boundary conditions in (14) for normalizable modes for different quantization scheme:

If v ≥ 1, A{(x) = 0 (23)

A(x) = 0 standard quantization
If 0 ≤ v < 1, (24)

B(x) = 0 alternative quantization

where in (24), it is also possible to impose mixed boundary conditions. In 0 ≤ v < 1 case, we will
have two different quantization choices that will correspond to two interpretations for “normalizable”.
In order to get rid of this ambiguity, from now on, we will refer the word “normalizable” to a specific
quantization (compatible with the boundary condition we choose for quantized mode) and refer the
word “non-normalizable” to the other mode (no matter it can actually be normalized or not).

3. Normalizable modes are used to build up Hilbert space in the bulk via operators in (22). In AdS/CFT
correspondence, we naturally expect bulk states should also have their boundary counterparts. Hence
we must expect Φ(x, z)→∼ O(x) for normalizable operator Φ(x, z). In other words, the Hilbert space in
bulk is (expect to be) dual to that in boundary.

4. Non-normalizable modes are not part of Hilbert space. If present, they should be considered as defining
background. This is perfectly consistent with earlier discussion. As seen in last lecture, A(x) is the
boundary “value” of the field (say in standard quantization). If A(x) = φ0(x), we should add a term´
ddxφ0(x)O(x) to boundary action, which is a modification of the boundary theory itself by a clas-

sical source φ0(x), i.e. φ0(x) is not quantized in boundary theory. More precisely, we have following
correspondence for non-normalizable modes:

ˆ
ddxφ0(x)O(x) ⇐⇒ φ0(x) = lim z∆−dΦ(z, x) (25)

z→0

5. Relation (25) implies that ∆ is the scaling dimension of O(x). In CFT, scaling dimension of O(x) is
defined by:

xµ → x′µ = λxµ O(x)→ O′(x′) = λ−∆O(x) (26)

Bulk isometry
xµ → x′µ = λxµ, z → z′ = λz (27)

implies the scale transformation of (26) on boundary. Since bulk isometry is a part of diffeomorphism
of bulk theory, and scaling transformation is a part of conformal symmetry of boundary theory, the
AdS/CFT correspondence must still be valid, namely

Φ(z, x) ⇐⇒ O(x)→ Φ′(z′, x′) ⇐⇒ O′(x′) (28)
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The fact that Φ is a scalar and boundary action should be conformal invariant implies

Φ(z, x) = Φ′(z′, x′)

ˆ
ddxφ0(x)O(x) =

ˆ
ddx′φ′0(x′)O′(x′) (29)

On the other hand, (25) implies

φ′0(x′) = lim z′∆−dΦ(z′, x′) = λ∆−dφ0(x) (30)
z→0

Together with (29), we haveˆ
ddx′φ′0(x′)O′(x′) = λ∆

ˆ
ddxφ0(x)O′(x′) =

ˆ
ddxφ0(x)O(x) =⇒ O′(x′) = λ−∆O(x) (31)

Hence, we find for a i.e. scalar field, in standard quantization,

d
∆ =

2
+

√
d2

+m2R2 (32)
4

that implies the following three cases for boundary operators:
i). m = 0, ∆ = d, marginal operator;
ii). m2 < 0, ∆ < d, relevant operator;
iii). m2 > 0, ∆ > d, irrelevant operator.
Considering IR/UV connection, the bulk interpretation of above three operators is also clear: UV in
boundary corresponds to z → 0 in bulk, and since Φ(z, x)→ φ0(x)zd−∆, we see the asymptotic behavior
in i) is constant (marginal), in ii) is vanishing (relevant, less and less important in UV) and in iii) is
growing (irrelevant, more and more important in UV).

To summarize, consider a bulk scalar field Φ(x, z) of mass m, when z → 0, Φ has two components

Φ(z, x) = A(x)zd−∆ +B(x)z∆ + · · · (33)

where
d

∆ =
2

+ v v =

√
d2

+m2R2 (34)
4

We have following correspondence between bulk and boundary:

Φ(x, z) ⇐⇒ O(x)

normalizable modes ⇐⇒ states

non-normalizable modes ⇐⇒ action

In standard quantization: (A(x) is non-normalizable)

A(x) ⇐⇒
ˆ
ddxφ0(x)O(x), φ0(x) = A(x)

B(x) ⇐⇒ O(x) (B(x) ∼ 〈O(x)〉to be shown later)

m ⇐⇒ ∆

In alternative quantization: (B(x) is non-normalizable, only for 0 < v < 1)

B(x) ⇐⇒
ˆ
ddxφ0(x)O(x), φ0(x) = A(x)

A(x) ⇐⇒ O(x) (A(x) ∼ 〈O(x)〉to be shown later)

m ⇐⇒ d−∆

In the last part of this lecture, I may give you some more examples to show the correspondence above is not
restricted to scalar field. Let us consider Maxwell field AM , which corresponds to Jµ. When z → 0, the transverse
component of the solution of equation of motion of AM is

A d
µ = aµ + bµz

−2 (35)

where aµ is non-normalizable mode. After similar scaling argument of
´
ddxa µ

µJ , we can get ∆ = d−1 as expected

for a conserved current. We can extend this discussion to massive vector field and get ∆ = d
2 +

√
(d−2)2 +m2R2.4

2

For stress tensor Tµν , after setting the metric to be ds2 = f(z)dz2 + gµνdx
µdxν where gµν → R (z2 ηµν + hµν), we

can get ∆ = d from scaling transformation in
´
ddxhµνT

µν .
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